(2)若时.求使函数为偶函数的值. 20090327 查看更多

 

题目列表(包括答案和解析)

已知f(x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(1)化简f(x)的解析式;
(2)若0≤θ≤π,求θ使函数f(x)为奇函数;
(3)在(2)成立的条件下,求满足f(x)=1,x∈[-π,π]的x的集合.

查看答案和解析>>

已知f (x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(1)化简f (x)的解析式;
(2)若0≤θ≤π,求θ使函数f (x)为偶函数;
(3)在(2)成立的条件下,求满足f (x)=1,x∈[-π,π]的x的集合.

查看答案和解析>>

已知函数
(1)若,且时,求:函数f(x)的值;
(2)若时,求:函数f(x)的最大值与最小值;
(3)用“五点法”画出函数f(x)在[0,π]上的图象.

查看答案和解析>>

(本小题满分12分)已知二次函数f(x)=ax2+bx+c.

(1)若f(-1)=0,试判断函数f(x)零点的个数;

(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:

①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;

②对任意x∈R,都有0≤f(x)-x≤(x-1)2.若存在,求出a,b,c的值;若不存在,请说

明理由。

(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立。

 

 

查看答案和解析>>

(本题满分12分)已知函数
(1)若,且时,求:函数的值;
(2)若时,求:函数的最大值与最小值;
(3)用“五点法”画出函数上的图象.

查看答案和解析>>

 

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

D

A

D

C

A

B

A

D

B

 

二、填空题

13.3    14.1   15.36π    16.

三、解答题

17.解:(1)

=………………………….2分

=.………………………………………4分

20090327

(2)要使函数为偶函数,只需

…………………………………………….8分

因为

所以.…………………………………………………………10分

18.(1)由题意知随机变量ξ的取值为2,3,4,5,6.

,,…………….2分

 ,

.…………………………. …………4分

所以随机变量ξ的分布列为

2

3

4

5

6

P

…………………………………………6分

(2)随机变量ξ的期望为

…………………………12分

19.解:(1)过点作,由正三棱柱性质知平面,

连接,则在平面上的射影.

,…………………………2分

中点,又,

所以的中点.

,

连结,则,

*为二面角

的平面角.…4分

中,

=

.

所以二面角的正切值为..…6分

(2)中点,

到平面距离等于到平面距离的2倍,

又由(I)知平面

平面平面

,则平面,

.

故所求点到平面距离为.…………………………12分

20.解:(1)函数的定义域为,因为

所以 当时,;当时,.

的单调递增区间是的单调递减区间是.………6分

(注: -1处写成“闭的”亦可)

(2)由得:

,则

所以时,时,

上递减,在上递增,…………………………10分

要使方程在区间上只有一个实数根,则必须且只需

解之得

所以实数的取值范围.……………………12分

21.解:(1)设

因为抛物线的焦点

.……………………………1分

,…2分

而点A在抛物线上,

.……………………………………4分

………………………………6分

(2)由,得,显然直线的斜率都存在且都不为0.

的方程为,则的方程为.

    由 ,同理可得.………8分

 

=.(当且仅当时取等号)

所以的最小值是8.…………………………………………………………12分

22.解:(1),由数列的递推公式得

.……………………………………………………3分

(2)

=

==.……………………5分

数列为公差是的等差数列.

由题意,令,得.……………………7分

(3)由(2)知

所以.……………………8分

此时=

=,……………………10分

*

*

 =

>.……………………12分

 


同步练习册答案