41 (2) II.(1) 查看更多

 

题目列表(包括答案和解析)

在一段时间内,某种商品的价格x(万元)和需求量Y(t)之间的一组数据为:
价格x1.41.61.822.2
需求量Y1210753
(1)在右面的坐标系中画出散点图;

(2)求出Y对x的回归直线方程 =;(其中:=
参考数据1.42+1.62+1.82+22+2.22=16.6)
序号
1
2
3
4
5
求和
(3)回答下列问题:
(i)若价格定为1.9万元,预测需求量大约是多少?(精确到0.01t)
(ii)当价格定为多少时,商品将出现滞销?(精确到0.01万元)
(iii)当价格定为多少时,获得的收益最大?

查看答案和解析>>

在一段时间内,某种商品的价格x(万元)和需求量Y(t)之间的一组数据为:
价格x1.41.61.822.2
需求量Y1210753
(1)在右面的坐标系中画出散点图;

(2)求出Y对x的回归直线方程 =;(其中:=
参考数据1.42+1.62+1.82+22+2.22=16.6)
序号
1
2
3
4
5
求和
(3)回答下列问题:
(i)若价格定为1.9万元,预测需求量大约是多少?(精确到0.01t)
(ii)当价格定为多少时,商品将出现滞销?(精确到0.01万元)
(iii)当价格定为多少时,获得的收益最大?

查看答案和解析>>

5、对于给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”.
(I)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“M类数列”?
若是,指出它对应的实常数p&,q,若不是,请说明理由;
(II)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.
(1)求数列{an}前2009项的和;
(2)是否存在实数t,使得数列{an}是“M类数列”,如果存在,求出t;如果不存在,说明理由.

查看答案和解析>>

选做题:不等式选讲
(1)已知实数m>0,n>0,求证:
a2
m
+
b2
n
(a+b)2
m+n

(2)利用(1)的结论,求函数y=
1
x
+
4
1-x
(其中x∈(0,1))的最小值.

查看答案和解析>>

(I)给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q对于任意n∈N*都成立,则称数列{cn}是“M类数列”.
(i)若an=3•2n,n∈N*,数列{an}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(ii)若数列{bn}的前n项和为Sn=n2+n,证明数列{bn}是“M类数列”.
(Ⅱ)若数列{an}满足a1=2,an+an+1=2n(n∈N*),求数列{an}前2013项的和.

查看答案和解析>>


同步练习册答案