⑶CD段克服摩擦力做功Wf 查看更多

 

题目列表(包括答案和解析)

精英家教网某村子的正西是一片山区.山脚下A处已建一处采石场,村子的北边有一池塘,南边有一树林,在B处是个石粉厂,在采石场采到的石料由公路ACEDB运输到石粉厂,如图所示.已知A,C,D,B在一条直线上,AC=2km,CE=2km,ED=3km,DB=2km,∠CED=120°.
(I)求CD的长.
(II)在运作了一段时间后,发现在运输车经过公路CE,ED时对池塘有污染..需要另建公路ACMNB.为了不破坏树林,必须要求CM=3km,∠CMN=135°,∠MNB=150°MN∥AC.求建这条新的公路中MN的长.

查看答案和解析>>

如图,成都市准备在南湖的一侧修建一条直路EF,另一侧修建一条观光大道,大道的前一部分为曲线段FBC,该曲线段是函数y=Asin(ωx+
3
),(A>0,ω>0),x∈[-4,0]
时的图象,且图象的最高点为B(-1,3),大道的中间部分为长1.5km的直线段CD,且CD∥EF.大道的后一部分是以O为圆心的一段圆弧DE.
(1)求曲线段FBC的解析式,并求∠DOE的大小;
(2)若南湖管理处要在圆弧大道所对应的扇形DOE区域内修建如图所示的水上乐园PQMN,问点P落在圆弧DE上何处时,水上乐园的面积最大?

查看答案和解析>>

(2012•盐城一模)在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对称图形),其中矩形ABCD的三边AB、BC、CD由长6分米的材料弯折而成,BC边的长为2t分米(1≤t≤
3
2
);曲线AOD拟从以下两种曲线中选择一种:曲线C1是一段余弦曲线(在如图所示的平面直角坐标系中,其解析式为y=cosx-1),此时记门的最高点O到BC边的距离为h1(t);曲线C2是一段抛物线,其焦点到准线的距离为
9
8
,此时记门的最高点O到BC边的距离为h2(t).
(1)试分别求出函数h1(t)、h2(t)的表达式;
(2)要使得点O到BC边的距离最大,应选用哪一种曲线?此时,最大值是多少?

查看答案和解析>>

某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板AB长为2m,跳水板距水面CD的高BC为3m,CE=5m,CF=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点hm(h≥1)到达距水面最大高度4m,规定:以CD为横轴,CB为纵轴建立坐标系.
(1)当h=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域EF内如水时才能达到压水花的训练要求,求达到压水花的训练要求时h的取值范围.

查看答案和解析>>

如图,
AC
是⊙O的一段劣弧,弦CD平分∠ACB交
AC
于点D,BC切
AC
于点C,延长弦AD交 BC于点B,
(1)若∠B=75°,则∠ADC=
110°
110°

(2)若⊙O的半径长为
5
2
,CD=3,则BD=
25
13
25
13

查看答案和解析>>


同步练习册答案