题目列表(包括答案和解析)
(本小题满分13分)
某校要从艺术节活动中所产生的4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中选出2名志愿者,参加广州亚运会的服务工作。求:
(1)选出的2名志愿者都是获得书法比赛一等奖的同学的概率;
(2)选出的2名志愿者中1名是获得书法比赛一等奖,另1名是获得绘画比赛一等奖的同学的概率.
(本小题满分12分)
某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为p,不堵车的概率为1—p。若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。
(I)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵的概率;
(II)在(I)的条件下,求三辆汽车中恰有两辆汽车被堵的概率
(本小题满分12分)
某校为了探索一种新的教学模式,进行了一项课题实验,乙班为实验班,甲班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,成绩如下表(总分:150分):
甲班
成绩 |
|||||
频数 |
4 |
20 |
15 |
10 |
1 |
乙班
成绩 |
|||||
频数 |
1 |
11 |
23 |
13 |
2 |
(Ⅰ)现从甲班成绩位于内的试卷中抽取9份进行试卷分析,请问用什么抽样方法更合理,并写出最后的抽样结果;
(Ⅱ)根据所给数据可估计在这次测试中,甲班的平均分是101.8,请你估计乙班的平均分,并计算两班平均分相差几分;
(Ⅲ)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由。
|
成绩小于100分[来源:ZXXK] |
成绩不小于100分 |
合计 |
甲班 |
26 |
50 |
|
乙班 |
12 |
50 |
|
合计 |
36 |
64 |
100 |
附:
0.15 |
0.10 |
0.05[来源:Z§xx§k.Com] |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841[来源:Z.xx.k.Com] |
5.024 |
6.635 |
7.879 |
10.828 |
(本小题满分12分)
某校高二年级共有1200名学生,为了分析某一次数学考试情况,今抽查100份试卷,成绩分布如下表:
成绩 |
|||||||||
人数 |
4 |
5 |
6 |
9 |
21 |
27 |
15 |
9 |
4 |
频率 |
0.04 |
0.05 |
0.06 |
0.09 |
0.21 |
0.27 |
0.15 |
0.09 |
0.04 |
(Ⅰ)画出频率分布直方图;
(Ⅱ)由频率分布表估计这次考试及格(60分以上为及格)的人数;
(Ⅲ)由频率分布直方图估计这考试的平均分.
(本小题满分12分)
某学校要对学生进行身体素质全面测试,对每位学生都要进行选考核(即共项测试,随机选取项),若全部合格,则颁发合格证;若不合格,则重新参加下期的选考核,直至合格为止,若学生小李抽到“引体向上”一项,则第一次参加考试合格的概率为,第二次参加考试合格的概率为,第三次参加考试合格的概率为,若第四次抽到可要求调换项目,其它选项小李均可一次性通过.
(1)求小李第一次考试即通过的概率;
(2)求小李参加考核的次数分布列.
一、选择题:1. D 2. B 3. A 4. D 5. C 6. B 7. D 8. A 9. C 10. B
11. A 12. B
二、填空题:13. 5;14. 18 ;15. 2 ;16. ③④
三、解答题:
17. 解:(1) 由已知得,即,………………2分
所以数列{}是以1为首项,公差2的等差数列.…………………………4分
故.………………………………………5分
(2) 由(1)知:,从而.…………………………7分
∴………………………………9分
……………………12分
18. 解:(1)……2分
……………………4分
∵∴………………………6分
(2) ∵
∴(k∈Z);…………………… 8分
∴≤x≤(k∈Z);…………………………10分
∴的单调递增区间为[,] (k∈Z)……………………12分
19. (1)解:把4名获书法比赛一等奖的同学编号为1,2,3,4,2名获绘画比赛一等奖的同学编号为5,6.从6名同学中任选两名的所有可能结果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.…………………4分
(1) 从6名同学中任选两名,都是书法比赛一等奖的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6个.…………………………6分
∴选出的两名志愿者都是书法比赛一等奖的概率.…………………8分
(2) 从6名同学中任选两名,一名是书法比赛一等奖,另一名是绘画比赛一等奖的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8个.………………………10分
∴选出的两名志愿者一名是书法比赛一等奖,另一名是绘画比赛一等奖的概率是.………………………12分
20. 解:(1) 取AB的中点G,连FG,可得FG∥AE,FG=AE,又CD⊥平面ABC,AE⊥平面ABC,∴CD∥AE,CD=AE………………………2分
∴FG∥CD,FG=CD,∵FG⊥平面ABC……………4分
∴四边形CDFG是矩形,DF∥CG,CG平面ABC,
DF平面ABC∴DF∥平面ABC…………………6分
(2) Rt△ABE中,AE=
∵△ABC是正三角形,∴CG⊥AB,∴DF⊥AB…………9分
又DF⊥FG,∴DF⊥平面ABE,DF⊥AF,
∴AF⊥平面BDF,∴AF⊥BD.……………………12分
21. 解:(1)与圆相切,则,即,所以,
………………………3分
则由,消去y得: (*)
由Δ=得,∴,………………4分
(2) 设,由(*)得,.…………5分
则
.…………………………6分
由,所以.∴k=±1.
.,∴………………………7分
∴或.…………………8分
(3) 由(2)知:(*)为
由弦长公式得
… 10分
所以………………………12分
22. (1) 解:设x∈(0,1],则-x∈[-1,0),∴………………1分
∵是奇函数.∴=………………………2分
∴当x∈(0,1]时, ,…………………3分
∴ ………………………………4分
(2) 当x∈(0,1]时,∵…………………6分
∵,x∈(0,1],≥1,
∴.………………………7分
即.……………………………8分
∴在(0,1]上是单调递增函数.…………………9分
(3) 解:当时, 在(0,1]上单调递增. ,
∴ (不合题意,舍之),………………10分
当≤-1时,由,得.……………………………11分
如下表:
1
>0
0
<0
ㄊ
最大值
ㄋ
由表可知: ,解出.……………………12分
此时∈(0,1)………………………………13分
∴存在,使在(0,1]上有最大值-6.………………………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com