当时.以为斜率过的直线与半椭圆的交点是. 查看更多

 

题目列表(包括答案和解析)

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求动点M的轨迹C2的方程;
(Ⅲ)过椭圆C1的焦点F2作直线l与曲线C2交于A、B两点,当l的斜率为
1
2
时,直线l1上是否存在点M,使AM⊥BM?若存在,求出M的坐标,若不存在,说明理由.

查看答案和解析>>

已知椭圆.
(1)我们知道圆具有性质:若为圆O:的弦AB的中点,则直线AB的斜率与直线OE的斜率的乘积为定值。类比圆的这个性质,写出椭圆的类似性质,并加以证明;
(2)如图(1),点B为在第一象限中的任意一点,过B作的切线分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值;
(3)如图(2),过椭圆上任意一点的两条切线PM和PN,切点分别为M,N.当点P在椭圆上运动时,是否存在定圆恒与直线MN相切?若存在,求出圆的方程;若不存在,请说明理由.
    
图(1)                                    图(2)

查看答案和解析>>

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求动点M的轨迹C2的方程;
(Ⅲ)过椭圆C1的焦点F2作直线l与曲线C2交于A、B两点,当l的斜率为
1
2
时,直线l1上是否存在点M,使AM⊥BM?若存在,求出M的坐标,若不存在,说明理由.

查看答案和解析>>

已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点P,线段的垂直平分线交于点M,求动点M的轨迹的方程;

(Ⅲ)过椭圆的焦点作直线与曲线交于AB两点,当的斜率为时,直线 上是否存在点M,使若存在,求出M的坐标,若不存在,说明理由

查看答案和解析>>

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.

(1)求椭圆的方程;

(2)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线

于点,线段垂直平分线交于点,求点的轨迹的方程;

(3)当P不在轴上时,在曲线上是否存在两个不同点C、D关于对称,若存在,

求出的斜率范围,若不存在,说明理由。

 

查看答案和解析>>


同步练习册答案