[范例2] 设曲线C的方程是.将C沿轴正向分别平移单位长度后得曲线,(1)写出曲线的方程,(2)证明曲线与曲线关于点对称,(3)如果曲线与曲线有且仅有一个公共点.证明. 查看更多

 

题目列表(包括答案和解析)

. 设曲线C的方程是,将C沿x轴,y轴正向分别平移单位长度后,得到曲线C1.(1)写出曲线C1的方程;(2)证明曲线C与C1关于点A()对称.

查看答案和解析>>

设抛物线>0)的焦点为,准线为上一点,已知以为圆心,为半径的圆,两点.

(Ⅰ)若,的面积为,求的值及圆的方程;

 (Ⅱ)若三点在同一条直线上,直线平行,且只有一个公共点,求坐标原点到距离的比值.

【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.

【解析】设准线轴的焦点为E,圆F的半径为

则|FE|==,E是BD的中点,

(Ⅰ) ∵,∴=,|BD|=

设A(),根据抛物线定义得,|FA|=

的面积为,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圆F的方程为:

(Ⅱ) 解析1∵三点在同一条直线上, ∴是圆的直径,,

由抛物线定义知,∴,∴的斜率为或-

∴直线的方程为:,∴原点到直线的距离=

设直线的方程为:,代入得,

只有一个公共点, ∴=,∴

∴直线的方程为:,∴原点到直线的距离=

∴坐标原点到距离的比值为3.

解析2由对称性设,则

      点关于点对称得:

     得:,直线

     切点

     直线

坐标原点到距离的比值为

 

查看答案和解析>>

已知两点F1(-2,0),F2(2,0),曲线C1上的动点P满足|PF1|+|PF2|=
2
|F1F2|

(1)求曲线C1的方程;
(2)设曲线C2的方程为|x|+|y|=m(m>0),当C1和C2有四个不同的交点时,求实数m的取值范围.

查看答案和解析>>

已知曲线的极坐标方程为ρ=4cos2
θ
2
-2
,则其直角坐标下的方程是(  )
A、x2+(y+1)2=1
B、(x+1)2+y2=1
C、(x-1)2+y2=1
D、x2+(y-1)2=1

查看答案和解析>>

如图,过抛物线的对称轴上任一点作直线与抛物线交于两点,点Q是点P关于原点的对称点.

(1)设,证明:

(2)设直线AB的方程是,过两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.

 

查看答案和解析>>


同步练习册答案