解:(1)设点M是函数任意点.点M关于A(0.1)的对称点为P. 查看更多

 

题目列表(包括答案和解析)

    已知函数f(x)=x21(x1)的图象是C1,函数y=g(x)的图象C2C1关于直线y=x对称.

    (1)求函数y=g(x)的解析式及定义域M

    (2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1x2都有|h(x1)h(x2)|a|x1x2|成立,则称函数y=h(x)A的利普希茨Ⅰ类函数.试证明:y=g(x)M上的利普希茨Ⅰ类函数;

    (3)AB是曲线C2上任意不同两点,证明:直线AB与直线y=x必相交.

 

查看答案和解析>>

    已知函数f(x)=x21(x1)的图象是C1,函数y=g(x)的图象C2C1关于直线y=x对称.

    (1)求函数y=g(x)的解析式及定义域M

    (2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1x2都有|h(x1)h(x2)|a|x1x2|成立,则称函数y=h(x)A的利普希茨Ⅰ类函数.试证明:y=g(x)M上的利普希茨Ⅰ类函数;

    (3)AB是曲线C2上任意不同两点,证明:直线AB与直线y=x必相交.

 

查看答案和解析>>

(本小题满分12分)已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2C1关于直线y=x对称.
(1)求函数y=g(x)的解析式及定义域M
(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1x2都有|h(x1)-h(x2)|≤a|x1x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数;
(3)设AB是曲线C2上任意不同两点,证明:直线AB与直线y=x必相交.

查看答案和解析>>

(1)选修4-2:矩阵与变换
设矩阵
(I)若a=2,b=3,求矩阵M的逆矩阵M-1
(II)若曲线C:x2+4xy+2y2=1在矩阵M的作用下变换成曲线C':x2-2y2=1,求a+b的值.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为(α为参数),点Q极坐标为
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
设函数f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若关于x的不等式f(x)≥4的解集为A,求集合A.

查看答案和解析>>

(1)选修4-2:矩阵与变换
设矩阵
(I)若a=2,b=3,求矩阵M的逆矩阵M-1
(II)若曲线C:x2+4xy+2y2=1在矩阵M的作用下变换成曲线C':x2-2y2=1,求a+b的值.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为(α为参数),点Q极坐标为
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
设函数f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若关于x的不等式f(x)≥4的解集为A,求集合A.

查看答案和解析>>


同步练习册答案