题目列表(包括答案和解析)
设f(x)=.
(1)证明:f(x)在其定义域上的单调性;
(2)证明: 方程f-1(x)=0有惟一解;
(3)解不等式f[x(x-)]<.
①方程f(x)-x=0有实数根;②函数f(x)的导函数f′(x)满足0<f′(x)<1.
(1)判断函数f(x)=x+sinx是否是集合M中的元素,并说明理由;
(2)集合M中的元素f(x)具有下列性质:
若f(x)的定义域为I,则对于任意[m,n]I都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立.
请利用这一性质证明:方程f(x)-x=0有唯一的实数根;
(3)若存在实数x1,使得M中元素f(x)定义域中的任意实数a、b都有|a-x1|<1和|b-x1|<1成立,证明:|f(b)-f(a)|<2.
①方程f(x)-x=0有实数根;②函数f(x)的导函数f′(x)满足0<f′(x)<1.
(1)判断函数f(x)=x+sinx是否是集合M中的元素,并说明理由;
(2)集合M中的元素f(x)具有下列性质:
若f(x)的定义域为I,则对于任意[m,n]I都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立.
请利用这一性质证明:方程f(x)-x=0有唯一的实数根;
(3)若存在实数x1,使得m中元素f(x)定义域中的任意实数a、b都有|a-x1|<1和|b-x1|<1成立.证明:|f(b)-f(a)|<2
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com