的结论下.设..求函数的最小值. 查看更多

 

题目列表(包括答案和解析)

函数f(x)=x3+
12
ax2+x+1
(x∈R).
(1)若f(x)在x∈(-∞,+∞)上是增函数,求实数a的取值范围;
(2)在(1)的条件下,设g(x)=e2x-aex,x∈[0,ln2],求函数g(x)的最小值;
(3)当a=0时,曲线y=f(x)的切线的斜率的取值范围记为集合A,曲线y=f(x)上不同两点P(x1,y1),Q(x2,y2)连线的斜率的取值范围记为集合B,你认为集合A,B之间有怎样的关系,并证明你的结论.

查看答案和解析>>

函数f(x)=x3+
1
2
ax2+x+1
(x∈R).
(1)若f(x)在x∈(-∞,+∞)上是增函数,求实数a的取值范围;
(2)在(1)的条件下,设g(x)=e2x-aex,x∈[0,ln2],求函数g(x)的最小值;
(3)当a=0时,曲线y=f(x)的切线的斜率的取值范围记为集合A,曲线y=f(x)上不同两点P(x1,y1),Q(x2,y2)连线的斜率的取值范围记为集合B,你认为集合A,B之间有怎样的关系,并证明你的结论.

查看答案和解析>>

设函数f(x)=x2+x.(1)解不等式:f(x)<0;(2)请先阅读下列材料,然后回答问题.
材料:已知函数g(x)=,问函数g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.一个同学给出了如下解答:
解:令u=-f(x)=-x2-x,则u=-(x+2+
当x=-时,u有最大值,umax=,显然u没有最小值,
∴当x=-时,g(x)有最小值4,没有最大值.
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=,请提出此问题的一个结论,例如:求通项an.并给出正确解答.
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

已知函数f(x)=
13
x3+ax2+bx,且f′(-1)=0.
(1)试用含a的代数式表示b,并求f(x)的单调区间;
(2)令a=-1,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,请仔细观察曲线f(x)在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(Ⅰ)若对任意的t∈(x1,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(Ⅱ)若存在点Q(n,f(n)),x≤n<m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程).

查看答案和解析>>

已知函数f(x)=lnx,g(x)=
12
ax2+bx (a≠0).

(Ⅰ)若a=-2时,函数h(x)=f(x)-g(x)在其定义域是增函数,求b的取值范围;
(Ⅱ)在(Ⅰ)的结论下,设函数φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;

查看答案和解析>>

一、选择题:(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中。只有一项是符合题目要求的。)

     B、D、C、A      B、A、D、B

二、填空题:(本大题共7小题,每小题5分,满分30分。其中13~15题是选做题,考生只能选做两题,三题全答的,只计算前两题得分。)

9、;  10、800;    11、①③④;   12、,1005;

13、   14、;   15、

三、解答题:(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤。)

16、(1)证明:∵PA⊥底面ABCD,MN底面ABCD

∴MN⊥PA   又MN⊥AD   且PA∩AD = A

∴MN⊥平面PAD  ………………………………………………4分

MN平面PMN   ∴平面PMN⊥平面PAD  ……………………6分

(2)∵BC⊥BA   BC⊥PA   PA∩BA = A   ∴BC⊥平面PBA

∴∠BPC为直线PC与平面PBA所成的角                  

……………………………………………10分

中,

  ………………12分

17、解:(1)由题意可知这5个点相邻两点间的弧长为

的可能的取值有,2,3,4

 ,

于是=×+2×+3×+4×=2。…………………6分

 

 

 

(2)连结MP,取线段MP的中点D,则OD⊥MP,易求得OD=

当S点在线段MP上时,三角形SAB的面积等于××8 =

所以只有当S点落在阴影部分时,面积才能大于

S阴影 = S扇形OMP - S△OMP = ××-×= 4-8,

所以由几何概型公式的三角形SAB的面积大于的概

率P =。  …………………12分

18、解:(1)证明:在中,由题设,AD = 2可得

,于是。在矩形中,.

,所以平面.…………………………………….4分

(2)解:由题设,,所以(或其补角)是异面直线所成的角.

中,由余弦定理得

由(1)知平面平面

所以,因而,于是是直角三角形,

………………………….8分

(3)解:过点P做于H,过点H做于E,连结PE

平面平面.又

因而平面平面

平面,又平面

,从而是二面角的平面角…………….12分

由题设可得,

于是在中,….14分

19、解: (1)依题意知,数列6ec8aac122bd4f6e是一个以500为首项,-20为公差的等差数列,所以

6ec8aac122bd4f6e,   ……………3分

6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e  …………………7分

 (Ⅱ)依题意得,6ec8aac122bd4f6e,即6ec8aac122bd4f6e

可化简得6ec8aac122bd4f6e, ①            …………………10分

6ec8aac122bd4f6e可设6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e可知6ec8aac122bd4f6e是减函数,

6ec8aac122bd4f6e是增函数,   又6ec8aac122bd4f6e

时不等式①成立          …………………13分

答:从今年起该企业至少经过4年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润……………………………………………….……14分

20、(1)连接E、F分别为、DB的中点, EF//

平面,EF平面

 EF//平面………………………………………………………4分

   (2)正方体中,平面平面

,正方形中,

= B,AB、平面,

平面平面,所以,又EF//,

所以EF. ……………………………………………………………9分

(3)正方体的棱长为2,分别为、DB的中点。

     

       

       

     

             

              ……………………………..………………14分

21、解:(1)…………………………………2分

上是增函数,上恒成立

…………………………………………4分

(当且仅当时取等号)

所以  ……………………..………………6分

(2)设,则

时,在区间上是增函数

所以的最小值为 ……………………………………………10分

时,

因为函数在区间上是增函数,在区间上也是增函数,

上为连续函数,所以上为增函数,

所以的最小值为

……………………………………14分

 

 

 

 


同步练习册答案