解: (I)由题意得: 所以椭圆的方程为 4分 查看更多

 

题目列表(包括答案和解析)

若函数在定义域内存在区间,满足上的值域为,则称这样的函数为“优美函数”.

(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;

(Ⅱ)若函数为“优美函数”,求实数的取值范围.

【解析】第一问中,利用定义,判定由题意得,由,所以

第二问中, 由题意得方程有两实根

所以关于m的方程有两实根,

即函数与函数的图像在上有两个不同交点,从而得到t的范围。

解(I)由题意得,由,所以     (6分)

(II)由题意得方程有两实根

所以关于m的方程有两实根,

即函数与函数的图像在上有两个不同交点。

 

查看答案和解析>>

已知函数f(x)=sin(ωx+φ) (0<φ<π,ω>0)过点,函数y=f(x)图象的两相邻对称轴间的距离为.

(1) 求f(x)的解析式;

(2) f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.

【解析】本试题主要考查了三角函数的图像和性质的运用,第一问中利用函数y=f(x)图象的两相邻对称轴间的距离为.得,所以

第二问中,

   可以得到单调区间。

解:(Ⅰ)由题意得,,…………………1分

代入点,得…………1分

    ∴

(Ⅱ)   的单调递减区间为.

 

查看答案和解析>>

△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积。

【解析】本试题主要考查了余弦定理的运用。利用由题意得,

并且得到结论。

解:(Ⅰ)由题意得,………1分…………1分

(Ⅱ)………………1分

   

 

查看答案和解析>>

已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.

【解析】第一问利用设椭圆的方程为,由题意得

解得

第二问若存在直线满足条件的方程为,代入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为

所以

所以.解得。

解:⑴设椭圆的方程为,由题意得

解得,故椭圆的方程为.……………………4分

⑵若存在直线满足条件的方程为,代入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为

所以

所以

因为,即

所以

所以,解得

因为A,B为不同的两点,所以k=1/2.

于是存在直线L1满足条件,其方程为y=1/2x

 

查看答案和解析>>

设函数f(x)=lnxgx)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.[来源:学。科。网]

(Ⅰ)求a、b的值; 

(Ⅱ)设x>0,试比较f(x)与g(x)的大小.[来源:学,科,网Z,X,X,K]

【解析】第一问解:因为f(x)=lnxgx)=ax+

则其导数为

由题意得,

第二问,由(I)可知,令

,  …………8分

是(0,+∞)上的减函数,而F(1)=0,            …………9分

∴当时,,有;当时,,有;当x=1时,,有

解:因为f(x)=lnxgx)=ax+

则其导数为

由题意得,

(11)由(I)可知,令

,  …………8分

是(0,+∞)上的减函数,而F(1)=0,            …………9分

∴当时,,有;当时,,有;当x=1时,,有

 

查看答案和解析>>


同步练习册答案