已知函数由下表给出: 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=数学公式(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若可用上述方法构造出一个常数列{xn},求t的取值范围.

查看答案和解析>>

已知函数f(x)=数学公式(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数t的值.

查看答案和解析>>

已知函数f(x)=(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数t的值.

查看答案和解析>>

已知函数f(x)=(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若可用上述方法构造出一个常数列{xn},求t的取值范围.

查看答案和解析>>

精英家教网已知点A(x1,y1)在圆(x-2)2+y2=4上运动,点A不与(0,0)重合,点B(4,y0)在直线x=4上运动,动点M(x,y)满足
OM
OB
OM
=
AB
.动点M的轨迹C的方程为F(x,y)=0.
(1)试用点M的坐标x,y表示y0,x1,y1
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由.(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分)
①对称性;
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);
③图形范围;
④渐近线;
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性.

查看答案和解析>>

                   高三数学试卷(理科)                 2009.4   

题号

1

2

3

4

5

6

7

8

答案

C

B

A

B

C

C

D

A

一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.

 

 

 

二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.

9.      10. 10,243      11.    12.       13. 24    14.   

注:两空的题目,第一个空3分,第二个空2分.

三、解答题:本大题共 6 小题,共 80 分.

15.(本小题满分12分)

(Ⅰ)解:记 “2次汇报活动都是由小组成员甲发言” 为事件A.    -----------------------------1分     

由题意,得事件A的概率,              

即2次汇报活动都是由小组成员甲发言的概率为.            ---------------------------5分

(Ⅱ)解:由题意,ξ的可能取值为2,0,                           ----------------------------6分

每次汇报时,男生被选为代表的概率为,女生被选为代表的概率为.

 所以,的分布列为:

2

0

P

---------------------------10分

的数学期望.                       ---------------------------12分

16.(本小题满分12分)

(Ⅰ)解:由三角函数的定义,得点B的坐标为.      ---------------------------1分

中,|OB|=2,

由正弦定理,得,即

所以 .                               ---------------------------5分

注:仅写出正弦定理,得3分. 若用直线AB方程求得也得分.

(Ⅱ)解:由(Ⅰ)得, ------------------7分

因为

所以,                             ----------------------------9分

                        

,                                    ---------------------------11分

        所以.                      ---------------------------12分

17.(本小题满分14分)

(Ⅰ)证明:在中,

      

       ,即,                             ---------------------------1分

      

       平面.                                      ---------------------------4分

(Ⅱ)方法一:

 解:由(Ⅰ)知

平面,                                      ---------------------------5分

如图,过C作于M,连接BM,

是BM在平面PCD内的射影,

为二面角B-PD-C的平面角.                       ---------------------------7分

中, , PC=1,

.      ---------------8分

中, , BC=1, ,

,

二面角B-PD-C的大小为.                       ---------------------------9分

  方法二:

       解:如图,在平面ABCD内,以C为原点, CD、CB、CP分别为x、y、z轴,建立空间直角坐标系C-xyz,

       则,            ---------------------------5分

过C作于M,连接BM,设

       则

;           1       

共线,

,               2

由12,解得

点的坐标为

,

为二面角B-PD-C的平面角.                       ---------------------------7分

        

         , 

 二面角B-PD-C的大小为.                         --------------------------9分

(Ⅲ)解:设点B到平面PAD的距离为h,               

      

       平面ABCD,

      

       在直角梯形ABCD中,

       .

       在中,

       

       

           的面积,                  ---------------------------10分

       三棱锥B-PAD的体积

,                             ---------------------------12分

,解得

       点B到平面PAD的距离为.                          ---------------------------14分                       

18.(本小题满分14分)

(Ⅰ)解:函数的定义域为,                      ---------------------------1分

           .                                       ---------------------------4分

      因为,所以.                                ---------------------------5分

(Ⅱ)解:当时,因为

              所以,故上是减函数;        ------------------------7分

         当a=0时,当时,,故上是减函数,

               当时,,故上是减函数,

               因为函数上连续,

               所以上是减函数;                  ---------------------------9分

      当0<a<1时,由, 得x=,或x=. --------------------------10分

            x变化时,的变化如情况下表:

0

+

0

极小值

极大值

     

 

 

 

             

        所以上为减函数、在上为减函数;上为增函数.                                                ------------------------13分

 综上,当时,上是减函数;

 当0<a<1时,上为减函数、在上为减函数;上为增函数.                                      ------------------------14分

19.(本小题满分14分)

   (Ⅰ)解:设A(x1, y1),

因为A为MN的中点,且M的纵坐标为3,N的纵坐标为0,

所以,                                            ---------------------------1分

又因为点A(x1, y1)在椭圆C上

所以,即,解得

则点A的坐标为,                       -------------------------3分

所以直线l的方程为.  --------------------------5分

   (Ⅱ)解:设直线AB的方程为,A(x1, y1),B(x2, y2),

当AB的方程为时,,与题意不符.        --------------------------6分

当AB的方程为时:

    由题设可得A、B的坐标是方程组的解,

    消去y得

    所以,                    

    则

                                                       ---------------------------8分

    因为

    所以,解得

    所以.                                      --------------------------10分

因为,即

    所以当时,由,得

上述方程无解,所以此时符合条件的直线不存在;      --------------------11分

时,

        因为点在椭圆上,

        所以,             -------------------------12分

        化简得

        因为,所以

        则.                           

综上,实数的取值范围为.             ---------------------------14分

20.(本小题满分14分)

(Ⅰ)解:由题意,创新数列为3,4,4,5,5的数列有两个,即:

(1)数列3,4,1,5,2;                           ---------------------------2分

(2)数列3,4,2,5,1.                            ---------------------------3分

         注:写出一个得2分,两个写全得3分.

(Ⅱ)答:存在数列,它的创新数列为等差数列.

解:设数列的创新数列为

因为中的最大值.

所以.

由题意知:中最大值,中最大值,

     所以,且.                       

为等差数列,设其公差为d,则,且N,    -----------------5分

     当d=0时,为常数列,又

           所以数列,此时数列是首项为m的任意一个符合条件的数列;

      当d=1时,因为

所以数列,此时数列;  --------------------7分

      当时,因为

           又,所以

这与矛盾,所以此时不存在,即不存在使得它的创新数列为的等差数列.

综上,当数列为:(1)首项为m的任意符合条件的数列;(2)数列时,它的创新数列为等差数列.            


同步练习册答案