在上是减函数,在上是增函数. -------10分 查看更多

 

题目列表(包括答案和解析)

设函数

(1)当时,求曲线处的切线方程;

(2)当时,求的极大值和极小值;

(3)若函数在区间上是增函数,求实数的取值范围.

【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。

解:(1)当……2分

   

为所求切线方程。………………4分

(2)当

………………6分

递减,在(3,+)递增

的极大值为…………8分

(3)

①若上单调递增。∴满足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

时,不合题意。综上所述,实数的取值范围是

 

查看答案和解析>>

(本题满分10分)已知函数,(),若同时满足以下条件:

在D上单调递减或单调递增

②  存在区间[]D,使在[]上的值域是[],那么称()为闭函数。

(1)求闭函数符合条件②的区间[];

(2)判断函数是不是闭函数?若是请找出区间[];若不是请说明理由;

(3)若是闭函数,求实数的取值范围.

 

查看答案和解析>>

(本题满分10分)设是奇函数(),

(1)求出的值

(2)若的定义域为[](),判断在定义域上的增减性,并加以证明;

 

查看答案和解析>>

(本题满分10分)设是奇函数(),
(1)求出的值
(2)若的定义域为[](),判断在定义域上的增减性,并加以证明;

查看答案和解析>>

(本题满分10分)已知函数,(),若同时满足以下条件:
在D上单调递减或单调递增
② 存在区间[]D,使在[]上的值域是[],那么称()为闭函数。
(1)求闭函数符合条件②的区间[];
(2)判断函数是不是闭函数?若是请找出区间[];若不是请说明理由;
(3)若是闭函数,求实数的取值范围.

查看答案和解析>>


同步练习册答案