解法二:由题设底面.平面.则平面平面.交线为. 查看更多

 

题目列表(包括答案和解析)

如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

(I) 证明:平面⊥平面

(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.

【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

【解析】(Ⅰ)由题设知BC⊥,BC⊥AC,,∴,    又∵,∴,

由题设知,∴=,即,

又∵,   ∴⊥面,    ∵

∴面⊥面

(Ⅱ)设棱锥的体积为=1,由题意得,==

由三棱柱的体积=1,

=1:1,  ∴平面分此棱柱为两部分体积之比为1:1

 

查看答案和解析>>

(2012•长宁区二模)棱锥的底面是正三角形,边长为1,棱锥的一条侧棱与底面垂直,其余两条侧棱与底面所成角都等于
π3
,设D为BC中点.
(1)求这个棱锥的侧面积和体积;
(2)求异面直线PD与AB所成角的大小.

查看答案和解析>>

如图,在正四棱锥中,

(1)求该正四棱锥的体积

(2)设为侧棱的中点,求异面直线

所成角的大小.

【解析】第一问利用设为底面正方形中心,则为该正四棱锥的高由已知,可求得

所以,

第二问设中点,连结

可求得

中,由余弦定理,得

所以,

 

查看答案和解析>>

(2007•潍坊二模)在一底面半径和高都是2m的圆柱形容器中盛满小麦种子,但有一粒带麦锈病的种子混入了其中.现从中随机取出2m3的种子,则取出带麦锈病的种子的概率是(  )

查看答案和解析>>

用斜二测画法画一个底面边长为4cm,高为3cm 的正四棱锥P-ABCD的直观图,点P在底面的投影是正方形的中心O,计算它的表面积.

查看答案和解析>>


同步练习册答案