连结EM.于是四边形EFOM为平行四边形. 查看更多

 

题目列表(包括答案和解析)

 (本题满分14分,第1小题6分,第2小题8分)

    如图,在四棱锥E-ABCD中,四边形ABCD为平行四边形,BE=BC,AE⊥BE,M为CE上一点,且BM⊥平面ACE。

   (1)求证:AE⊥BC;

   (2)如果点N为线段AB的中点,求证:MN∥平面ADE.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,BE=
3
,EF=1,BC=
13
,且M是BD的中点.
(I)求证:EM∥平面ADF;
(II)求证:平面BDE⊥平面ABEF;
(Ⅲ)求三棱锥A-DEF的体积.

查看答案和解析>>

(2012•朝阳区一模)在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB=
3
,EF=1
BC=
13
,且M是BD的中点.
(Ⅰ)求证:EM∥平面ADF;
(Ⅱ)求二面角D-AF-B的大小;
(Ⅲ)在线段EB上是否存在一点P,使得CP与AF所成的角为30°?若存在,求出BP的长度;若不存在,请说明理由.

查看答案和解析>>

(2012•朝阳区一模)在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中点.
(Ⅰ)求证:EM∥平面ADF;
(Ⅱ)在EB上是否存在一点P,使得∠CPD最大?若存在,请求出∠CPD的正切值;若不存在,请说明理由.

查看答案和解析>>

在棱长为的正方体中,是线段的中点,.

(1) 求证:^

(2) 求证://平面

(3) 求三棱锥的表面积.

【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定为平行四边形,然后,可知结论成立。

第三问中,是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为面积为.  所以三棱锥的表面积为.

解: (1)证明:根据正方体的性质

因为

所以,又,所以

所以^.               ………………4分

(2)证明:连接,因为

所以为平行四边形,因此

由于是线段的中点,所以,      …………6分

因为平面,所以∥平面.   ……………8分

(3)是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为,              ……………………10分

面积为.          所以三棱锥的表面积为

 

查看答案和解析>>


同步练习册答案