题目列表(包括答案和解析)
(本题满分14分,第1小题6分,第2小题8分)
如图,在四棱锥E-ABCD中,四边形ABCD为平行四边形,BE=BC,AE⊥BE,M为CE上一点,且BM⊥平面ACE。
(1)求证:AE⊥BC;
(2)如果点N为线段AB的中点,求证:MN∥平面ADE.
3 |
13 |
3 |
13 |
13 |
在棱长为的正方体中,是线段的中点,.
(1) 求证:^;
(2) 求证://平面;
(3) 求三棱锥的表面积.
【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定为平行四边形,然后,可知结论成立。
第三问中,是边长为的正三角形,其面积为,
因为平面,所以,
所以是直角三角形,其面积为,
同理的面积为, 面积为. 所以三棱锥的表面积为.
解: (1)证明:根据正方体的性质,
因为,
所以,又,所以,,
所以^. ………………4分
(2)证明:连接,因为,
所以为平行四边形,因此,
由于是线段的中点,所以, …………6分
因为面,平面,所以∥平面. ……………8分
(3)是边长为的正三角形,其面积为,
因为平面,所以,
所以是直角三角形,其面积为,
同理的面积为, ……………………10分
面积为. 所以三棱锥的表面积为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com