又平面CDE. EM平面CDE. ∴ FO∥平面CDE和已知条件.在等边△CDE中. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)如图,三棱柱ABC—A1B1C1的所有棱长都是2,又平面

ABC,D、E分别是AC、CC1的中点。

(1)求证:平面A1BD;

(2)求二面角D—BA1—A的余弦值;

(3)求点B1到平面A1BD的距离。

 

 

 

查看答案和解析>>

如图,在底面是正方形的四棱锥P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

(I)求证:PD⊥BC;

(II)求二面角B—PD—C的正切值。

【解析】第一问利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

BC在平面ABCD内 ,BC⊥CD,∴BC⊥平面PCD.

∴PD⊥BC.

第二问中解:取PD的中点E,连接CE、BE,

为正三角形,

由(I)知BC⊥平面PCD,∴CE是BE在平面PCD内的射影,

∴BE⊥PD.∴∠CEB为二面角B—PD—C的平面角,进而求解。

 

查看答案和解析>>

如图所示,已知直线不共面,直线,直线,又平面平面平面,求证:三点不共线.

查看答案和解析>>

(本小题满分12分)如图,在矩形中,,又⊥平面
(Ⅰ)若在边上存在一点,使
的取值范围;
(Ⅱ)当边上存在唯一点,使时,
求二面角的余弦值.

查看答案和解析>>

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小.

【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面平面,∴平面,又,∴平面. 可得证明

(3)因为∴为面的法向量.∵

为平面的法向量.∴利用法向量的夹角公式,

的夹角为,即二面角的大小为

方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点

,又点,∴

,且不共线,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,即

,∴平面.   ………8分

(Ⅲ)∵,∴平面

为面的法向量.∵

为平面的法向量.∴

的夹角为,即二面角的大小为

 

查看答案和解析>>


同步练习册答案