题目列表(包括答案和解析)
(12分) 如图1-5,在平面直角坐标系xOy中,M、N分别是椭圆+=1的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.
(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意的k>0,求证:PA⊥PB.
.如图,中,,分别过作平面的垂线和,连结和交于点.
(Ⅰ)设点为中点,若,求证:直线与平面平行;
(Ⅱ)设为中点,二面角等于,求直线与平面所成角
的大小.
(Ⅰ)证明c2=ab,并求直线BF与y轴的交点M的坐标;
(Ⅱ)设直线BF交椭圆于P、Q两点,证明·=b2.
(09年日照一模)(14分)
已知离心率为的椭圆的中心在原点,焦点在轴上,双曲线
以椭圆的长轴为实轴,短轴为虚轴,且焦距为。
(I)求椭圆及双曲线的方程;
(Ⅱ)设椭圆的左、右顶点分别为,在第二象限内取双曲线
上一点,连结交椭圆于点,连结并延长交椭圆于点,若。求四边形的面积。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com