由 令b=1, ∴c=2, a=2-x. 查看更多

 

题目列表(包括答案和解析)

定义F(x,y)=(1+x)y,x,y∈(0,+∞).

(1)令函数f(x)=F(1,log2(x3+ax2+bx+1))的图象为曲线C,若存在实数b使得曲线C在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围;

(2)令函数g(x)=F(1,log2[(lnx-1)ex+x]),是否存在实数x0∈[1,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由;

(3)当x,y∈N*,且x<y时,求证:F(x,y)>F(y,x).

查看答案和解析>>

(本小题满分13分)
定义F(xy)=(1+x)y,其中xy∈(0,+∞).
(1)令函数f(x)=F(1,log2(x3ax2bx+1)),其图象为曲线C,若存在实数b使得曲线Cx0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围;
(2)令函数g(x)=F(1,log2[(lnx-1)exx]),是否存在实数x0∈[1,e],使曲线yg(x)在点xx0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
(3)当xy∈N?,且x<y时,求证:F(xy)>F(yx).

查看答案和解析>>

下列说法中:

①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;

②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;

④对于函数,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.

正确的个数为

[  ]

A.1个

B.2个

C.3个

D.4个

查看答案和解析>>


同步练习册答案