查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

                   高三数学试卷(理科)                 2009.4   

题号

1

2

3

4

5

6

7

8

答案

C

B

A

B

C

C

D

A

一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.

 

 

 

二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.

9.      10. 10,243      11.    12.       13. 24    14.   

注:两空的题目,第一个空3分,第二个空2分.

三、解答题:本大题共 6 小题,共 80 分.

15.(本小题满分12分)

(Ⅰ)解:记 “2次汇报活动都是由小组成员甲发言” 为事件A.    -----------------------------1分     

由题意,得事件A的概率,              

即2次汇报活动都是由小组成员甲发言的概率为.            ---------------------------5分

(Ⅱ)解:由题意,ξ的可能取值为2,0,                           ----------------------------6分

每次汇报时,男生被选为代表的概率为,女生被选为代表的概率为.

 所以,的分布列为:

2

0

P

---------------------------10分

的数学期望.                       ---------------------------12分

16.(本小题满分12分)

(Ⅰ)解:由三角函数的定义,得点B的坐标为.      ---------------------------1分

中,|OB|=2,

由正弦定理,得,即

所以 .                               ---------------------------5分

注:仅写出正弦定理,得3分. 若用直线AB方程求得也得分.

(Ⅱ)解:由(Ⅰ)得, ------------------7分

因为

所以,                             ----------------------------9分

                        

,                                    ---------------------------11分

        所以.                      ---------------------------12分

17.(本小题满分14分)

(Ⅰ)证明:在中,

      

       ,即,                             ---------------------------1分

      

       平面.                                      ---------------------------4分

(Ⅱ)方法一:

 解:由(Ⅰ)知

平面,                                      ---------------------------5分

如图,过C作于M,连接BM,

是BM在平面PCD内的射影,

为二面角B-PD-C的平面角.                       ---------------------------7分

中, , PC=1,

.      ---------------8分

中, , BC=1, ,

,

二面角B-PD-C的大小为.                       ---------------------------9分

  方法二:

       解:如图,在平面ABCD内,以C为原点, CD、CB、CP分别为x、y、z轴,建立空间直角坐标系C-xyz,

       则,            ---------------------------5分

过C作于M,连接BM,设

       则

;           1       

共线,

,               2

由12,解得

点的坐标为

,

为二面角B-PD-C的平面角.                       ---------------------------7分

        

         , 

 二面角B-PD-C的大小为.                         --------------------------9分

(Ⅲ)解:设点B到平面PAD的距离为h,               

      

       平面ABCD,

      

       在直角梯形ABCD中,

       .

       在中,

       

       

           的面积,                  ---------------------------10分

       三棱锥B-PAD的体积

,                             ---------------------------12分

,解得

       点B到平面PAD的距离为.                          ---------------------------14分                       

18.(本小题满分14分)

(Ⅰ)解:函数的定义域为,                      ---------------------------1分

           .                                       ---------------------------4分

      因为,所以.                                ---------------------------5分

(Ⅱ)解:当时,因为

              所以,故上是减函数;        ------------------------7分

         当a=0时,当时,,故上是减函数,

               当时,,故上是减函数,

               因为函数上连续,

               所以上是减函数;                  ---------------------------9分

      当0<a<1时,由, 得x=,或x=. --------------------------10分

            x变化时,的变化如情况下表:

0

+

0

极小值

极大值

     

 

 

 

             

        所以上为减函数、在上为减函数;上为增函数.                                                ------------------------13分

 综上,当时,上是减函数;

 当0<a<1时,上为减函数、在上为减函数;上为增函数.                                      ------------------------14分

19.(本小题满分14分)

   (Ⅰ)解:设A(x1, y1),

因为A为MN的中点,且M的纵坐标为3,N的纵坐标为0,

所以,                                            ---------------------------1分

又因为点A(x1, y1)在椭圆C上

所以,即,解得

则点A的坐标为,                       -------------------------3分

所以直线l的方程为.  --------------------------5分

   (Ⅱ)解:设直线AB的方程为,A(x1, y1),B(x2, y2),

当AB的方程为时,,与题意不符.        --------------------------6分

当AB的方程为时:

    由题设可得A、B的坐标是方程组的解,

    消去y得

    所以,                    

    则

                                                       ---------------------------8分

    因为

    所以,解得

    所以.                                      --------------------------10分

因为,即

    所以当时,由,得

上述方程无解,所以此时符合条件的直线不存在;      --------------------11分

时,

        因为点在椭圆上,

        所以,             -------------------------12分

        化简得

        因为,所以

        则.                            

综上,实数的取值范围为.             ---------------------------14分

20.(本小题满分14分)

(Ⅰ)解:由题意,创新数列为3,4,4,5,5的数列有两个,即:

(1)数列3,4,1,5,2;                           ---------------------------2分

(2)数列3,4,2,5,1.                            ---------------------------3分

         注:写出一个得2分,两个写全得3分.

(Ⅱ)答:存在数列,它的创新数列为等差数列.

解:设数列的创新数列为

因为中的最大值.

所以.

由题意知:中最大值,中最大值,

     所以,且.                       

为等差数列,设其公差为d,则,且N,    -----------------5分

     当d=0时,为常数列,又

           所以数列,此时数列是首项为m的任意一个符合条件的数列;

      当d=1时,因为


同步练习册答案