即,当时结论成立. 查看更多

 

题目列表(包括答案和解析)

用数学归纳法证明:

【解析】首先证明当n=1时等式成立,再假设n=k时等式成立,得到等式

下面证明当n=k+1时等式左边

根据前面的假设化简即可得到结果,最后得到结论.

 

查看答案和解析>>

已知基本不等式:(a、b都是正实数,当且仅当a=b时等号成立)可以推广到n个正实数的情况,即对于n个正实数a1,a2,a3,…,an,有(当且仅当a1=a2=a3=…=an时,取等号).

    同理,当a、b都是正实数时,(a+b)(+)≥2ab·2·=4,可以推导出结论:对于n个正实数a1,a2,a3,…,an有(a1+a2+a3)(++)≥_______;(a1+a2+a3+a4)(+++)≥________;(a1+a2+a3+…+an)(+++···)≥________;

    如果对于n个同号实数a1,a2,a3,…,an(同正或者同负),那么,根据上述结论,(a1+a2+a3+…+an)(+++···)的取值范围是________.

   

查看答案和解析>>

已知基本不等式:(a、b都是正实数,当且仅当a=b时等号成立)可以推广到n个正实数的情况,即对于n个正实数a1,a2,a3,…,an,有(当且仅当a1=a2=a3=…=an时,取等号).

同理,当a、b都是正实数时,(a+b)()≥2ab·2·=4,可以推导出结论:对于n个正实数a1,a2,a3,…,an有(a1+a2+a3)()≥________;(a1+a2+a3+a4)()≥________;(a1+a2+a3+…+an)(+…)≥________;

如果对于n个同号实数a1,a2,a3,…,an(同正或者同负),那么,根据上述结论,(a1+a2+a3+…+an)(+…)的取值范围是________.

查看答案和解析>>

设数列{an}满足a1=2,an+1=2an+2,用数学归纳法证明an=4×2n-1-2的第二步中,设n=k时结论成立,即ak=4×2k-1-2,那么当n=k+1时, __________.

查看答案和解析>>

设数列{an}满足a1=2,an+1=2an+2,用数学归纳法证明an=4×2n-1-2的第二步中,设n=k时结论成立,即ak=4×2k-1-2,那么当n=k+1时, __________.

查看答案和解析>>


同步练习册答案