化简.得解得.或. 查看更多

 

题目列表(包括答案和解析)

阅读材料:某同学求解sin18°的值其过程为:设α=18°,则5α=90°,从而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展开得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化简,得4sin2α+2sinα-1=0,解得sinα=
-1±
5
4
,∵sinα=sin18°∈(0,1),∴sinα=
-1+
5
4
(sinα=
-1-
5
4
<0舍去),即sin18°=
-1+
5
4
.试完成以下填空:设函数f(x)=ax3+1对任意x∈[-1,1]都有f(x)≥0成立,则实数a的值为
4
4

查看答案和解析>>

化简得(  )

A.6    B.2x

C.6或-2x      D.-2x或6或2

查看答案和解析>>

阅读材料:某同学求解sin18°的值其过程为:设α=18°,则5α=90°,从而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展开得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化简,得4sin2α+2sinα-1=0,解得sinα=
-1±
5
4
,∵sinα=sin18°∈(0,1),∴sinα=
-1+
5
4
(sinα=
-1-
5
4
<0舍去),即sin18°=
-1+
5
4
.试完成以下填空:设函数f(x)=ax3+1对任意x∈[-1,1]都有f(x)≥0成立,则实数a的值为______.

查看答案和解析>>

已知,且

(1)求的值;

(2)求的值.

【解析】本试题主要考查了二项式定理的运用,以及系数求和的赋值思想的运用。第一问中,因为,所以,可得,第二问中,因为,所以,所以,利用组合数性质可知。

解:(1)因为,所以,  ……3分

化简可得,且,解得.    …………6分

(2),所以

所以

 

查看答案和解析>>

(2012•浙江模拟)平面内与直线平行的非零向量称为直线的方向向量;与直线的方向向量垂直的非零向量称为直线的法向量.在平面直角坐标系中,利用求动点的轨迹方程的方法,可以求出过点A(2,1)且法向量为
n
=(-1,2)的直线
(点法式)方程为-(x-2)+2(y-1)=0,化简后得x-2y=0.类比以上求法,在空间直角坐标系中,经过点A(2,1,3),且法向量为
n
=(-1,2,1)
的平面(点法式)方程为
x-2y-z+3=0
x-2y-z+3=0
(请写出化简后的结果).

查看答案和解析>>

一、1.D 2. B 3.A  4.D  5. D  6.  A  7.  B  8.  C  9.  D  10.  C   11.  C  12 A 13. 提示:此题为抽样方法的选取问题.当总体中个体较多时宜采用系统抽样;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较少时,宜采用随机抽样.

依据题意,第①项调查应采用分层抽样法、第②项调查应采用简单随机抽样法.故选B.

答案:B

1,3,5

答案:B

二. 15. 37  ; 16.  ; 17.甲 ; 18.5600;

19. 提示:此问题总体中个体的个数较多,因此采用系统抽样.按题目中要求的规则抽取即可.

m=6,k=7,m+k=13,∴在第7小组中抽取的号码是63.

答案:63

20.提示:不妨设在第1组中随机抽到的号码为x,则在第16组中应抽出的号码为120+x.

设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,∴x=6.

答案:6

三.21.解 分层抽样应按各层所占的比例从总体中抽取.

∵120∶16∶24=15∶2∶3,又共抽出20人,

∴各层抽取人数分别为20×=15人,20×=2人,20×=3人.

答案:15人、2人、3人.

22. 解:(1)  ;  ;.

的概率分布如下表

0

1

2

3

P

(2)乙至多击中目标2次的概率为.

1,3,5

所以甲恰好比乙多击中目标2次的概率为

 


同步练习册答案