假设某应聘者对三门指定课程考试及格的概率分别是.且三门课程考试是否及格相互之间没有影响.(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率,(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.[考查目的] 本题主要考查互斥事件有一个发生的概率和对立事件的概率,以及不等式等基本知识.同时考查逻辑思维能力和数学应用能力.[标准解答]记该应聘者对三门指定课程考试及格的事件分别为A.B,C.则P(A)=a.P(B)=b.P(C)=c.(Ⅰ) 应聘者用方案一考试通过的概率 查看更多

 

题目列表(包括答案和解析)

某公司招聘员工,分笔试和面试两部分,笔试指定三门考试课程,至少有两门合格为笔试通过,笔试通过才有资格面试.假设应聘者对这三门课程考试合格的概率分别是0.9,0.6,0.5,且每门课程考试是否合格相互之间没有影响,面试通过的概率是0.4.
(1)求某应聘者被聘用的概率;
(2)若有4人来该公司应聘,求至少有2人被聘用的概率.

查看答案和解析>>

某公司招聘员工,分笔试和面试两部分,笔试指定三门考试课程,至少有两门合格为笔试通过,笔试通过才有资格面试.假设应聘者对这三门课程考试合格的概率分别是0.9,0.6,0.5,且每门课程考试是否合格相互之间没有影响,面试通过的概率是0.4.
(1)求某应聘者被聘用的概率;
(2)有4人来该公司应聘,记被聘用的人数为ξ,求ξ的分布列及期望.

查看答案和解析>>

某公司招聘员工,分笔试和面试两部分,笔试指定三门考试课程,至少有两门合格为笔试通过,笔试通过才有资格面试.假设应聘者对这三门课程考试合格的概率分别是0.9,0.6,0.5,且每门课程考试是否合格相互之间没有影响,面试通过的概率是0.4.
(1)求某应聘者被聘用的概率;
(2)若有4人来该公司应聘,求至少有2人被聘用的概率.

查看答案和解析>>

某公司招聘员工,指定三门考试课程,有两种考试方案.

方案一:考试三门课程,至少有两门及格为考试通过;

方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

假设某应聘者对三门指定课程考试及格的概率分别是a,b,c,且三门课程考试是否及格相互之间没有影响.

(1)分别求该应聘者用方案一和方案二时考试通过的概率;

(2)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)

查看答案和解析>>

某公司招聘员工,指定三门考试课程,有两种考试方案.

方案一:考试三门课程,至少有两门及格为考试通过;

方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

假设某应聘者对三门指定课程考试及格的概率分别为a、b、c,且三门课程考试是否及格相互之间没有影响.

(1)分别求该应聘者用方案一和方案二时考试通过的概率;

(2)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)

查看答案和解析>>

一、1.D 2. B 3.A  4.D  5. D  6.  A  7.  B  8.  C  9.  D  10.  C   11.  C  12 A 13. 提示:此题为抽样方法的选取问题.当总体中个体较多时宜采用系统抽样;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较少时,宜采用随机抽样.

依据题意,第①项调查应采用分层抽样法、第②项调查应采用简单随机抽样法.故选B.

答案:B

1,3,5

答案:B

二. 15. 37  ; 16.  ; 17.甲 ; 18.5600;

19. 提示:此问题总体中个体的个数较多,因此采用系统抽样.按题目中要求的规则抽取即可.

m=6,k=7,m+k=13,∴在第7小组中抽取的号码是63.

答案:63

20.提示:不妨设在第1组中随机抽到的号码为x,则在第16组中应抽出的号码为120+x.

设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,∴x=6.

答案:6

三.21.解 分层抽样应按各层所占的比例从总体中抽取.

∵120∶16∶24=15∶2∶3,又共抽出20人,

∴各层抽取人数分别为20×=15人,20×=2人,20×=3人.

答案:15人、2人、3人.

22. 解:(1)  ;  ;.

的概率分布如下表

0

1

2

3

P

(2)乙至多击中目标2次的概率为.

1,3,5

所以甲恰好比乙多击中目标2次的概率为

 


同步练习册答案