正态分布的概念及主要性质(1)正态分布的概念 查看更多

 

题目列表(包括答案和解析)

(2013•宁波模拟)定义一种运算“*”,对于正整数n,满足以下运算性质:①1*1=2,②(n+1)*1=3(n*1),则n*1的运算结果用含n的代数式表示为
2•3n-1
2•3n-1

查看答案和解析>>

(2013•石景山区二模)已知集合Sn={(x1,x2,…,xn)|x1,x2,…,xn是正整数1,2,3,…,n的一个排列}(n≥2),函数g(x)=
1, x>0
-1,  x<0.

对于(a1,a2,…an)∈Sn,定义:bi=g(ai-a1)+g(ai-a2)+…+g(ai-ai-1),i∈{2,3,…,n},b1=0,称bi为ai的满意指数.排列b1,b2,…,bn为排列a1,a2,…,an的生成列;排列a1,a2,…,an为排列b1,b2,…,bn的母列.
(Ⅰ)当n=6时,写出排列3,5,1,4,6,2的生成列及排列0,-1,2,-3,4,3的母列;
(Ⅱ)证明:若a1,a2,…,an和a′1,a′2,…,a′n为Sn中两个不同排列,则它们的生成列也不同;
(Ⅲ)对于Sn中的排列a1,a2,…,an,定义变换τ:将排列a1,a2,…,an从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换τ将排列a1,a2,…,an变换为各项满意指数均为非负数的排列.

查看答案和解析>>

已知圆M:(x-m)2+(y-n)22及定点N(1,0),点P是圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0.
(Ⅰ)若m=-1,n=0,r=4,求点G的轨迹C的方程;
(Ⅱ)若动圆M和(Ⅰ)中所求轨迹C相交于不同两点A、B,是否存在一组正实数m,n,r使得直线MN垂直平分线段AB,若存在,求出这组正实数;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)的定义域是(-1,1),对于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且当x<0时,f(x)>0.
(Ⅰ)验证函数g(x)=ln
1-x
1+x
是否满足上述这些条件;
(Ⅱ)你发现这样的函数f(x)还具有其它什么样的主要性质?试就函数的奇偶性、单调性的结论写出来,并加以证明.

查看答案和解析>>

(本题12分)对于函数为奇函数(Ⅰ)求的值;(Ⅱ)用函数单调性定义及指数函数性质证明: 上是增函数。

查看答案和解析>>

一、1.D 2. B 3.A  4.D  5. D  6.  A  7.  B  8.  C  9.  D  10.  C   11.  C  12 A 13. 提示:此题为抽样方法的选取问题.当总体中个体较多时宜采用系统抽样;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较少时,宜采用随机抽样.

依据题意,第①项调查应采用分层抽样法、第②项调查应采用简单随机抽样法.故选B.

答案:B

1,3,5

答案:B

二. 15. 37  ; 16.  ; 17.甲 ; 18.5600;

19. 提示:此问题总体中个体的个数较多,因此采用系统抽样.按题目中要求的规则抽取即可.

m=6,k=7,m+k=13,∴在第7小组中抽取的号码是63.

答案:63

20.提示:不妨设在第1组中随机抽到的号码为x,则在第16组中应抽出的号码为120+x.

设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,∴x=6.

答案:6

三.21.解 分层抽样应按各层所占的比例从总体中抽取.

∵120∶16∶24=15∶2∶3,又共抽出20人,

∴各层抽取人数分别为20×=15人,20×=2人,20×=3人.

答案:15人、2人、3人.

22. 解:(1)  ;  ;.

的概率分布如下表

0

1

2

3

P

(2)乙至多击中目标2次的概率为.

1,3,5

所以甲恰好比乙多击中目标2次的概率为

 


同步练习册答案