解含参数不等式时.要特别注意数形结合思想.函数与方程思想.分类讨论思想的录活运用.学科网 查看更多

 

题目列表(包括答案和解析)

D.

【命题意图】本题考查二元一次不等式(组)表示的平面区域、直线的斜率、三角形面积公式等基础知识,考查数形结合思想,容易题.

查看答案和解析>>

设抛物线>0)的焦点为,准线为上一点,已知以为圆心,为半径的圆,两点.

(Ⅰ)若,的面积为,求的值及圆的方程;

 (Ⅱ)若三点在同一条直线上,直线平行,且只有一个公共点,求坐标原点到距离的比值.

【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.

【解析】设准线轴的焦点为E,圆F的半径为

则|FE|==,E是BD的中点,

(Ⅰ) ∵,∴=,|BD|=

设A(),根据抛物线定义得,|FA|=

的面积为,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圆F的方程为:

(Ⅱ) 解析1∵三点在同一条直线上, ∴是圆的直径,,

由抛物线定义知,∴,∴的斜率为或-

∴直线的方程为:,∴原点到直线的距离=

设直线的方程为:,代入得,

只有一个公共点, ∴=,∴

∴直线的方程为:,∴原点到直线的距离=

∴坐标原点到距离的比值为3.

解析2由对称性设,则

      点关于点对称得:

     得:,直线

     切点

     直线

坐标原点到距离的比值为

 

查看答案和解析>>

解关于x的不等式>1(a>0).

解参数不等式时对于参数的讨论,特别注意不能随便去分母.

查看答案和解析>>

解不等式(x2+x+1)(x+1)3(x-2)2(3-x)>0.

解高次不等式时将不等式一边分解为若干个一次因式的积,且x的系数为正.

查看答案和解析>>

(2007•普陀区一模)现有问题:“对任意x>0,不等式x-a+
1
x+a
>0恒成立,求实数a的取值范围.”有两位同学用数形结合的方法分别提出了自己的解题思路和答案:
学生甲:在一个坐标系内作出函数f(x)=
1
x+a
和g(x)=-x+a的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在g(x)的上方.可解得a的取值范围是[0,+∞]
学生乙:在坐标平面内作出函数f(x)=x+a+
1
x+a
的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在直线y=2a的上方.可解得a的取值范围是[0,1].
则以下对上述两位同学的解题方法和结论的判断都正确的是(  )

查看答案和解析>>


同步练习册答案