又f(-2)=4a-2b=3f.而学科网 查看更多

 

题目列表(包括答案和解析)

(第一、二层次学校的学生做)
对于函数f(x)=ax2+bx+1(a>0),如果方程f(x)=x有相异两根x1,x2
(1)若x1<1<x2,且f(x)的图象关于直线x=m对称.求证:m
12

(2)若0<x1<2且|x1-x2|=2,求证:4a+2b<1;
(3)α、β为区间[x1,x2]上的两个不同的点,求证:2aαβ-(1-b)(a+β)+2<0.

查看答案和解析>>

(第一、二层次学校的学生做)
对于函数f(x)=ax2+bx+1(a>0),如果方程f(x)=x有相异两根x1,x2
(1)若x1<1<x2,且f(x)的图象关于直线x=m对称.求证:m
1
2

(2)若0<x1<2且|x1-x2|=2,求证:4a+2b<1;
(3)α、β为区间[x1,x2]上的两个不同的点,求证:2aαβ-(1-b)(a+β)+2<0.

查看答案和解析>>

(第一、二层次学校的学生做)
对于函数f(x)=ax2+bx+1(a>0),如果方程f(x)=x有相异两根x1,x2
(1)若x1<1<x2,且f(x)的图象关于直线x=m对称.求证:m
(2)若0<x1<2且|x1-x2|=2,求证:4a+2b<1;
(3)α、β为区间[x1,x2]上的两个不同的点,求证:2aαβ-(1-b)(a+β)+2<0.

查看答案和解析>>

(本小题满分12分)

阅读下面内容,思考后做两道小题。

在一节数学课上,老师给出一道题,让同学们先解,题目是这样的:

已知函数f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范围。

题目给出后,同学们马上投入紧张的解答中,结果很快出来了,大家解出的结果有很多个,下面是其中甲、乙两个同学的解法:

甲同学的解法:由f(1)=k+b,f(-1)=-k+b得

①+②得:0≤2b≤4,即0≤b≤2               ③

② ×(-1)+①得:-1≤k-b≤1             ④

④+②得:0≤2k≤4                                               ⑤

③+⑤得:0≤2k+b≤6。

又∵f(2)=2k+b

∴0≤f(2)≤6,0≤Z≤6

      乙同学的解法是:由f(1)=k+b,f(-1)=-k+b得

①+②得:0≤2b≤4,即:0≤b≤2                        ③

①-②得:2≤2k≤2,即:1≤k≤1

∴k=1,

∵f(2)=2k+b=1+b

由③得:1≤f(2)≤3

∴:1≤Z≤3

(Ⅰ)如果课堂上老师让你对甲、乙两同学的解法给以评价,你如何评价?

(Ⅱ)请你利用线性规划方面的知识,再写出一种解法。

查看答案和解析>>

已知f(x)=
ax2+2
b-3x
是定义在(-∞,0)∪(0,+∞)上的奇函数,f(2)=-
5
3

(1)求a,b的值;
(2)请用函数单调性的定义说明:f(x)在区间(1,+∞)上的单调性;
(3)求f(x)的值域.

查看答案和解析>>


同步练习册答案