2b.8≤4a≤12.-3≤-2b≤-1.所以 5≤f(-2)≤11.学科网 查看更多

 

题目列表(包括答案和解析)

把正整数1,2,3,4,5,6,…按某种规律填入下表,
2 6 10 14
1 4 5 8 9 12 13[
3 7 11 15
按照这种规律继续填写,2012出现在第
1509
1509
列.

查看答案和解析>>

16、把正整数1,2,3,4,5,6,…按某种规律填入下表,
2 6 10 14
1 4 5 8 9 12 13
3 7 11 15
    按照这种规律继续填写,2011出现在第
3
行第
1508
列.

查看答案和解析>>

(本小题满分12分)

        甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,采用分层抽样抽取了105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)

甲校:

分组

[140,150]

频数

2

3

10

15

15

x

3

1

乙校:

分组

[来源:学§科§网Z§X§X§K]

[140,150]

频数

1

2

9

8

10

10

y

3

   (1)计算x,y的值,并分别估计两上学校数学成绩的优秀率;

   (2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.

 

甲校

乙校

总计

优秀

 

 

 

非优秀

 

 

 

总计

 

 

 

附:

0.10

0.025

0.010

2.706

5.024

6.635

 

查看答案和解析>>

(本小题满分12分)

        甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,采用分层抽样抽取了105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)

甲校:

分组

[140,150]

频数

2

3

10

15

15

x

3

1

乙校:

分组

[140,150]

频数

1

2

9

8

10

10

y

3

   (1)计算x,y的值,并分别估计两上学校数学成绩的优秀率;

   (2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.

甲校

乙校

总计

优秀

非优秀

总计

附:

0.10

0.025

0.010

2.706

5.024

6.635

查看答案和解析>>

甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,采用分层抽样抽取了105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)
甲校:
分组 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
频数 2 3 10 15 15 x 3 1
乙校:
分组 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
频数 1 2 9 8 10 10 y 3
(1)计算x,y的值,并分别估计两上学校数学成绩的优秀率;
(2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
  甲校 乙校 总计
优秀      
非优秀      
总计      
附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(k2≥k0 0.10 0.025 0.010
k0 2.706 5.024 6.635

查看答案和解析>>


同步练习册答案