方法二:由得 查看更多

 

题目列表(包括答案和解析)

(2009•浦东新区二模)已知
i
=(1,0),
c
=(0,
2
)
,若过定点A(0,
2
)
、以
i
c
(λ∈R)为法向量的直线l1与过点B(0,-
2
)
c
i
为法向量的直线l2相交于动点P.
(1)求直线l1和l2的方程;
(2)求直线l1和l2的斜率之积k1k2的值,并证明必存在两个定点E,F,使得|
PE
|+|
PF
|
恒为定值;
(3)在(2)的条件下,若M,N是l:x=2
2
上的两个动点,且
EM
FN
=0
,试问当|MN|取最小值时,向量
EM
+
FN
EF
是否平行,并说明理由.

查看答案和解析>>

对于变量x与y,现在随机得到4个样本点A1(2,1),A2(3,2),A3(5,6),A4(4,5).小马同学通过研究后,得到如下结论:
(1)四个样本点的散点图是一个平行四边形的四个顶点;
(2)平行四边形A1A2A3A4的两条对角线A1A3、A2A4所在的直线均可以作为这组样本点的以变量x为解释变量的用最小二乘法求出的回归直线,所不同的是这两条回归直线所对应的回归方程的预报精度不同.你认为上述结论正确吗?试说明理由.(参考数据:
4
k=1
xk=14
4
k=1
xk2=54,
4
k=1
yk=14,
4
k=1
xkyk=58

查看答案和解析>>

对于变量x与y,现在随机得到4个样本点A1(2,1),A2(3,2),A3(5,6),A4(4,5).小马同学通过研究后,得到如下结论:
(1)四个样本点的散点图是一个平行四边形的四个顶点;
(2)平行四边形A1A2A3A4的两条对角线A1A3、A2A4所在的直线均可以作为这组样本点的以变量x为解释变量的用最小二乘法求出的回归直线,所不同的是这两条回归直线所对应的回归方程的预报精度不同.你认为上述结论正确吗?试说明理由.(参考数据:
4








k=1
xk=14
4








k=1
xk2=54,
4








k=1
yk=14,
4








k=1
xkyk=58

查看答案和解析>>

电视剧《华罗庚》中有一个镜头:华罗庚少年时代用心算法解出了“孙子算经”中的难题,原文是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?学曰:二十三.”即一个正整数,被3,5,7除,余数分别为2,3,2.“孙子算经”解法的口诀是:“三人同行七十稀,五树梅花二十一,其子团圆正月丰,除百零五便得知.”

    这个算法又叫“韩信点兵”.相传韩信才略过人,领兵打仗时,为了对敌方保密,从不点自己军队的人数,只是让他的士兵以三人一排很快地从他面前过去,再以五人一排走一次,最后以七人一排走过去,由于队伍走得很快,别人根本来不及数有多少人.然而韩信只对各队士兵的最后一排掠一眼,就知道总数了,他利用的就是上面的这个口诀,你能理解这个口诀吗?

    求解“孙子问题”的算法有很多,你能想出什么样的算法?

   

查看答案和解析>>

电视剧《华罗庚》中有一个镜头:华罗庚少年时代用心算法解出了“孙子算经”中的难题,原文是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?学曰:二十三.”即一个正整数,被3,5,7除,余数分别为2,3,2.“孙子算经”解法的口诀是:“三人同行七十稀,五树梅花二十一,其子团圆正月丰,除百零五便得知.”

    这个算法又叫“韩信点兵”.相传韩信才略过人,领兵打仗时,为了对敌方保密,从不点自己军队的人数,只是让他的士兵以三人一排很快地从他面前过去,再以五人一排走一次,最后以七人一排走过去,由于队伍走得很快,别人根本来不及数有多少人.然而韩信只对各队士兵的最后一排掠一眼,就知道总数了,他利用的就是上面的这个口诀.

    画出程序框图,并编写程序解决“韩信点兵”问题.

查看答案和解析>>


同步练习册答案