2) 2)对于椭圆C上任意一点M .试证:总存在角(∈R)使等式:=cos+sin成立 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的左右焦点分别为F1,F2
(1)若椭圆C上的点A(1,
3
2
)到F1,F2的距离之和为4,求椭圆C的方程和焦点的坐标;
(2)若M,N是C上关于(0,0)对称的两点,P是C上任意一点,直线PM,PN的斜率都存在,记为kPM,kPN,求证:kPM与kPN之积为定值.

查看答案和解析>>

已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2
5
,点(
5
4
3
)
在该椭圆上.
(1)求椭圆C的方程;
(2)设椭圆C上的一点p在第一象限,且满足PF1⊥PF2,⊙O的方程为x2+y2=4.求点p坐标,并判断直线pF2与⊙O的位置关系;
(3)设点A为椭圆的左顶点,是否存在不同于点A的定点B,对于⊙O上任意一点M,都有
MB
MA
为常数,若存在,求所有满足条件的点B的坐标;若不存在,说明理由.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点.
(1)求直线ON(O为坐标原点)的斜率KON
(2)对于椭圆C上任意一点M,试证:总存在角θ(θ∈R)使等式:
OM
=cosθ
OA
+sinθ
OB
成立.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上的一动点P到右焦点的最短距离为2-
2
,且右焦点到右准线的距离等于短半轴的长.
(1)求椭圆C的方程;
(2)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于定点Q;
(3)在(2)的条件下,过点Q的直线与椭圆C交于M,N两点,求
OM
ON
的取值范围.

查看答案和解析>>

已知椭圆C=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆CAB两点,N为弦AB的中点。

(1)求直线ONO为坐标原点)的斜率KON

(2)对于椭圆C上任意一点M ,试证:总存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>


同步练习册答案