A. 查看更多

 

题目列表(包括答案和解析)

精英家教网A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π3
)=4
的距离的最小值是
 

B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
 

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

精英家教网A.(不等式选做题)
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
 

B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3
,AB=BC=4,则AC的长为
 

C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π
3
)
上任意两点间的距离的最大值为
 

查看答案和解析>>

精英家教网A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为CPC=2
3
,若∠CAP=30°,则⊙O的直径AB=
 

C.(极坐标系与参数方程选做题)若圆C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ为参数)
与直线x-y+m=0相切,则m=
 

查看答案和解析>>

精英家教网A.(不等式选做题)不等式|3x-6|-|x-4|>2x的解集为
 


B.(几何证明选做题)如图,直线PC与圆O相切于点C,割线PAB经过圆心O,
弦CD⊥AB于点E,PC=4,PB=8,则CE=
 

C.(坐标系与参数方程选做题)在极坐标系中,圆ρ=4cosθ的圆心到直线ρsin(θ+
π
4
)=2
2
的距离为
 

查看答案和解析>>

一、选择题

CDABA  BCBAB

二、填空题

11.     12. -1    13.1<e<2    14.     15.{-1,0}

提示:8.利用点到直线的距离公式知,即在圆内,也在椭圆内,所以过点的直线与椭圆总有两个不同的交点.

9.可以转化为求展开式中所有奇数项系数之和,赋值即可.

10.原问题有且仅有一个正实数解.令,则,令

,由.又时,,时,.所以.又

.结合三次函数图像即可.

15.

,即,当m为整数时,值为0,m为小数时,值为-1,故所求值域为{-1,0}

 

三、解答题

16. (1)…………………3分

由条件………………………………………6分

(2),令,解得,又  所以上递减,在上递增…………………………13分

 

17.(1)答错题目的个数

∴分布列为:,期望(道题)……7分

(2)设该考生会x道题,不会10-x道题,则…10分

解得:(舍),故该考生最多会3道题…………………………………13分

 

18.(1)作,垂足为,连结,由题设知,底面

中点,由知,

从而,于是,由三垂线定理知,……………4分

(2)由题意,,所以侧面,又侧面,所以侧面侧面.作,垂足为,连接,则平面.

与平面所成的角,…………………………………7分

,得:, 又,           

因而,所以为等边三角形.

,垂足为,连结.

由(1)知,,又

平面

是二面角的平面角………………………………………………...10分

.

所以二面角……………………….13分

 

19.(1)由,得,…2分

两式相减,得:

综上,数列为首项为1,公比为的等比数列…………………………..…….6分

(2)由,得,所以是首项为1,,公差为的等差数列,……………………………….…………………………....9分

……………………….………………………....13分

 

 

20.(1)设点,则

所以,当x=p时,…………………………………………………….….4分

(2)由条件,设直线,代入,得:

,则

…......................................................................................7分

….10分

,所以为定值2……………………………………………….12分

21. (1)是奇函数,则恒成立,

,故…………………….2分

(2)上单调递减,

只需   恒成立.

,则

,而恒成立,.….…………………….7分

 

 

(3)由(1)知方程为

时,上为增函数;

时,上为减函数;

时,.而

函数 在同一坐标系的大致图象如图所示,

时,方程无解;

,即时,方程有一个根;

时,方程有两个根.………………………………….12分

 

 


同步练习册答案