题目列表(包括答案和解析)
在等差数列中,若,则的值为( )
A. 6 B. 8 C. 10 D. 16
第Ⅱ卷 (非选择题 共100分)
已知均为正数,,则的最小值是 ( )
A. B. C. D.
第Ⅱ卷 (非选择题 共90分)
二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上。
若函数在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( )
A.若,不存在实数使得;
B.若,存在且只存在一个实数使得;
C.若,有可能存在实数使得;
D.若,有可能不存在实数使得
第Ⅱ卷(非选择题 共90分)
如图是长度为定值的平面的斜线段,点为斜足,若点在平面内运动,使得的面积为定值,则动点P的轨迹是
A.圆 B.椭圆
C一条直线 D两条平行线
第Ⅱ卷(非选择题 共110分)
填空题(本大题共6小题,每小题5分,共30分.)
正项数列的前n项的乘积,则数列的前n项和中的最大值是 ( )
A. B. C. D.
第Ⅱ卷(非选择题,共90分)
一、选择题
CDABA BCBAB
二、填空题
11. 12. -1 13.1<e<2 14. 15.{-1,0}
提示:8.利用点到直线的距离公式知,即在圆内,也在椭圆内,所以过点的直线与椭圆总有两个不同的交点.
9.可以转化为求展开式中所有奇数项系数之和,赋值即可.
10.原问题有且仅有一个正实数解.令,则,令
,,由得或.又时,;,时,.所以.又
;.结合三次函数图像即可.
15. ,
,即,当m为整数时,值为0,m为小数时,值为-1,故所求值域为{-1,0}
三、解答题
16. (1)…………………3分
由条件………………………………………6分
(2),令,解得,又 所以在上递减,在上递增…………………………13分
17.(1)答错题目的个数
∴分布列为:,期望(道题)……7分
(2)设该考生会x道题,不会10-x道题,则…10分
解得:或(舍),故该考生最多会3道题…………………………………13分
18.(1)作,垂足为,连结,由题设知,底面,
且为中点,由知,,
从而,于是,由三垂线定理知,……………4分
(2)由题意,,所以侧面,又侧面,所以侧面侧面.作,垂足为,连接,则平面.
故为与平面所成的角,…………………………………7分
由,得:, 又,
因而,所以为等边三角形.
作,垂足为,连结.
由(1)知,,又,
故平面,,
是二面角的平面角………………………………………………...10分
.,,,
所以二面角为或……………………….13分
19.(1)由,得,…2分
又, 两式相减,得:
,
综上,数列为首项为1,公比为的等比数列…………………………..…….6分
(2)由,得,所以是首项为1,,公差为的等差数列,……………………………….…………………………....9分
……………………….………………………....13分
20.(1)设点,则
所以,当x=p时,…………………………………………………….….4分
(2)由条件,设直线,代入,得:
设,则,
…......................................................................................7分
….10分
又,所以为定值2……………………………………………….12分
21. (1)是奇函数,则恒成立,
,,故…………………….2分
(2)在上单调递减,,,
只需 (恒成立.
令,则
,而恒成立,.….…………………….7分
(3)由(1)知,方程为,
令,, ,
当时,,在上为增函数;
当时,,在上为减函数;
当时,.而,
函数、 在同一坐标系的大致图象如图所示,
当即时,方程无解;
当,即时,方程有一个根;
当,即时,方程有两个根.………………………………….12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com