(III)讨论关于的方程的根的个数. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=lnx+
3
2
x2-mx

(Ⅰ)若函数f(x)图象上任意一点处的切线的倾斜角均不小于
π
3
,求实数m的取值范围;
(Ⅱ)设m=2,若存在x0∈[1,2],不等式|a+3x0|-x0f′(x0)<0成立,求实数a的取值范围;
(III)已知k∈R,讨论关于x的方程f(x)+mx=
4
3
(x2+x)+k
在区间[2,4]上的实根个数(e≈2.71828)

查看答案和解析>>

已知函数f(x)=lnx
(Ⅰ)若函数f(x)图象上任意一点处的切线的倾斜角均不小于,求实数m的取值范围;
(Ⅱ)设m=2,若存在x∈[1,2],不等式|a+3x|-xf′(x)<0成立,求实数a的取值范围;
(III)已知k∈R,讨论关于x的方程f(x)+mx=在区间[2,4]上的实根个数(e≈2.71828)

查看答案和解析>>

已知函数f(x)=lnx
(Ⅰ)若函数f(x)图象上任意一点处的切线的倾斜角均不小于,求实数m的取值范围;
(Ⅱ)设m=2,若存在x∈[1,2],不等式|a+3x|-xf′(x)<0成立,求实数a的取值范围;
(III)已知k∈R,讨论关于x的方程f(x)+mx=在区间[2,4]上的实根个数(e≈2.71828)

查看答案和解析>>

 

已知函数(a为常数)是R上的奇函数,函数

是区间[-1,1]上的减函数.

   (I)求a的值;

   (II)若上恒成立,求t的取值范围;

   (III)讨论关于x的方程的根的个数.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

已知函数f(x)=2x3-3ax2+a+b(其中a,b为实常数).
(I)讨论函数的单调区间;
(II) 当a>0时,函数f(x)有三个不同的零点,证明:-a<b<a3-a;
(III) 若f(x)在区间[1,2]上是减函数,设关于X的方程f(x)=2x3-2ax2+3x+a+b的两个非零实数根为x1,x2.试问是否存在实数m,使得m2+tm+1≤|x1-x2|对任意满足条件的a及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

一、选择题

CDABA  BCBAB

二、填空题

11.     12. -1    13.1<e<2    14.     15.{-1,0}

提示:8.利用点到直线的距离公式知,即在圆内,也在椭圆内,所以过点的直线与椭圆总有两个不同的交点.

9.可以转化为求展开式中所有奇数项系数之和,赋值即可.

10.原问题有且仅有一个正实数解.令,则,令

,由.又时,,时,.所以.又

.结合三次函数图像即可.

15.

,即,当m为整数时,值为0,m为小数时,值为-1,故所求值域为{-1,0}

 

三、解答题

16. (1)…………………3分

由条件………………………………………6分

(2),令,解得,又  所以上递减,在上递增…………………………13分

 

17.(1)答错题目的个数

∴分布列为:,期望(道题)……7分

(2)设该考生会x道题,不会10-x道题,则…10分

解得:(舍),故该考生最多会3道题…………………………………13分

 

18.(1)作,垂足为,连结,由题设知,底面

中点,由知,

从而,于是,由三垂线定理知,……………4分

(2)由题意,,所以侧面,又侧面,所以侧面侧面.作,垂足为,连接,则平面.

与平面所成的角,…………………………………7分

,得:, 又,           

因而,所以为等边三角形.

,垂足为,连结.

由(1)知,,又

平面

是二面角的平面角………………………………………………...10分

.

所以二面角……………………….13分

 

19.(1)由,得,…2分

两式相减,得:

综上,数列为首项为1,公比为的等比数列…………………………..…….6分

(2)由,得,所以是首项为1,,公差为的等差数列,……………………………….…………………………....9分

……………………….………………………....13分

 

 

20.(1)设点,则

所以,当x=p时,…………………………………………………….….4分

(2)由条件,设直线,代入,得:

,则

…......................................................................................7分

….10分

,所以为定值2……………………………………………….12分

21. (1)是奇函数,则恒成立,

,故…………………….2分

(2)上单调递减,

只需   恒成立.

,则

,而恒成立,.….…………………….7分

 

 

(3)由(1)知方程为

时,上为增函数;

时,上为减函数;

时,.而

函数 在同一坐标系的大致图象如图所示,

时,方程无解;

,即时,方程有一个根;

时,方程有两个根.………………………………….12分

 

 


同步练习册答案