(Ⅰ)若.证明数列为等比数列,并求数列的通项公式, 查看更多

 

题目列表(包括答案和解析)

设等比数列{an}的前n项和为Sn,等差数列bn的前n项和为Tn,已知Sn=2n+1-c+1(其中c为常数),b1=1,b2=c.
(1)求常数c的值及数列{an},bn的通项公式an和bn
(2)设dn=
bn
an
,设数列dn的前n项和为Dn,若不等式m≤Dn<k对于任意的n∈N*恒成立,求实数m的最大值与整数k的最小值.
(3)试比较
1
T1
+
1
T2
+
1
T3
+…+
1
Tn
与2的大小关系,并给出证明.

查看答案和解析>>

设等比数列的前n项和为,等差数列的前n项和为,已知(其中c为常数),
(1)求常数c的值及数列的通项公式
(2)设,设数列的前n项和为,若不等式对于任意的恒成立,求实数m的最大值与整数k的最小值。
(3)试比较与2的大小关系,并给出证明。

查看答案和解析>>

设等比数列{an}的前n项和为Sn,等差数列bn的前n项和为Tn,已知Sn=2n+1-c+1(其中c为常数),b1=1,b2=c.
(1)求常数c的值及数列{an},bn的通项公式an和bn
(2)设,设数列dn的前n项和为Dn,若不等式m≤Dn<k对于任意的n∈N*恒成立,求实数m的最大值与整数k的最小值.
(3)试比较与2的大小关系,并给出证明.

查看答案和解析>>

数列{an}的前n项和为Sn(n∈N*),点(an,Sn)在直线y=2x-3n上,
(1)若数列{an+c}成等比数列,求常数c的值;
(2)数列{an}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
(3)若bn=
1
3
an
+1,请求出一个满足条件的指数函数g(x),使得对于任意的正整数n恒有
n
k=1
g(k)
(bk+1)(bk+1+1)
1
3
成立,并加以证明.(其中为连加号,如:
n
i-1
an=a1+a2+…+an

查看答案和解析>>

数列中,

(1)若为公差为11的等差数列,求

(2)若是以为首项、公比为的等比数列,求的值,并证明对任意总有:

 

查看答案和解析>>

一、 A C C D A  B D B A C    D C

二、13.   14. ①甲乙的平均数相同,均为85;② 甲乙的中位数相同,均为86;       ③乙的成绩较稳定,甲的成绩波动性较大;……       15.       16.

三、17(Ⅰ)

            =

            =

得,

.

故函数的零点为.       ……………………………………6分

(Ⅱ)由

.又

得 

         , 

                  ……………………………………12分

18. 由三视图可知:,底面ABCD为直角梯形,,PB=BC=CD=1,AB=2

                            …………3分

(Ⅱ) 当M为PB的中点时CM∥平面PDA.

取PB中点N,连结MN,DN,可证MN∥DN且MN=DN

∴CM∥DN,∴CM∥平面PDA                                …………6分

 (Ⅲ)分别以BC、BA、BP所在直线为x轴、y轴、z轴,建立空间直角坐标系.

假设在BC边上存在点Q,使得二面角A-PD-Q为  

 

同理,,可得

=

解得………………………………………12分

19. (Ⅰ)设“世博会会徽”卡有张,由,得=6.

 故“海宝”卡有4张. 抽奖者获奖的概率为.                 …………6分

(Ⅱ)    的分布列为

  

1

2

3

4

 

p

                                                                         ………………………………12分

20. (Ⅰ)证明 设

相减得  

注意到  

有        

即                        …………………………………………5分

(Ⅱ)①设

由垂径定理,

即       

化简得  

轴平行时,的坐标也满足方程.

故所求的中点的轨迹的方程为

…………………………………………8分

②     假设过点P(1,1)作直线与有心圆锥曲线交于两点,且P为的中点,则

         

由于 

直线,即,代入曲线的方程得

         即    

          得.

故当时,存在这样的直线,其直线方程为

时,这样的直线不存在.        ………………………………12分

21. (Ⅰ)

得                   …………………………3分     

   

时,时,

故函数的单调增区间为,单调减区间为.   ………………………5分

(Ⅱ)由(Ⅰ)

得 

时,时,

处取得极大值,

……………………………………7分

(1)       当时,函数在区间为递减 ,

(2)     时,

(3)       当时,函数在区间为递增 ,

                                  

                                          ………………………………………12分

22. (Ⅰ)

         

              …………………………………6分

(Ⅱ)解法1:由,得

猜想时,一切恒成立.

①当时,成立.

②设时,,则由

=

*时,

由①②知时,对一切,有.   ………………………………10分

解法2:假设

,可求

故存在,使恒成立.            …………………………………10分

(Ⅲ)证法1:

,由(Ⅱ)知

                                     …………………………………14分

证法2:

猜想.数学归纳法证明

①当时,成立

②假设当时,成立

由①②对成立,下同证法1。

                                            …………………………………14分

 

 

 

 

 


同步练习册答案