题目列表(包括答案和解析)
(本小题满分13分)
某次月考数学第Ⅰ卷共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准为:“每题只有一个选项是正确的,选对得5分,不选或选错得0分。”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余3道题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意而乱猜,试求该考生:
(Ⅰ)得40分的概率;
(Ⅱ)得多少分的可能性最大?
(Ⅲ)所得分数的数学期望。
(本小题满分13分)
某次月考数学第Ⅰ卷共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准为:“每题只有一个选项是正确的,选对得5分,不选或选错得0分。”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余3道题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意而乱猜,试求该考生:
(Ⅰ)得40分的概率;
(Ⅱ)得多少分的可能性最大?
(Ⅲ)所得分数的数学期望。
(本小题满分13分)
在一次数学考试中,共有10道选择题,每题均有四个选项,其中有且只有一个选项是正确的,评分标准规定:“每道题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有6道题是正确的,其余题目中:有两道题可判断两个选项是错误的,有一道可判断一个选项是错误的,还有一道因不理解题意只好乱猜,请求出该考生:
(Ⅰ)得50分的概率;
(Ⅱ)得40分的概率.www.www.zxxk.com
(本小题满分13分)
在一次数学考试中,共有10道选择题,每题均有四个选项,其中有且只有一个选项是正确的,评分标准规定:“每道题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有6道题是正确的,其余题目中:有两道题可判断两个选项是错误的,有一道可判断一个选项是错误的,还有一道因不理解题意只好乱猜,请求出该考生:
(Ⅰ)得50分的概率;www.www.zxxk.com
(Ⅱ)设该考生所得分数为,求的数学期望.
(本小题满分13分)
在一次数学考试中,共有10道选择题,每题均有四个选项,其中有且只有一个选项是正确的,评分标准规定:“每道题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有6道题是正确的,其余题目中:有两道题可判断两个选项是错误的,有一道可判断一个选项是错误的,还有一道因不理解题意只好乱猜,请求出该考生:
(Ⅰ)得50分的概率;
(Ⅱ)设该考生所得分数为,求的数学期望.
2009年4月
一、选择题:本大题共10小题,每题5分,共50分.
1.A 2.D 3.B 4.A 5.D 6.C 7.D 8.B 9.B 10.C
二、填空题:本大题共5小题,每题5分,共25分.
11. 12. 13.
14. 15.①②⑤
三、解答题:本题共6小题,共75分.
16.解:(1) ??????????????????????????????????????? 3分
∴
∵
∴ ??????????????????????????????????????????????????????????????????????????? 5分
∴
(2) ????????????????????????????????????????????????????? 8分
∴ ????????????????????????????????????????????????????????????????? 9分
∴ ???????????????????????????????????????????????????????????????????? 10分
∴ ?????????????????????????????????????????????????????????????????????????? 11分
∴ ?????????????? 13分
17.解:(1) 有两道题答对的概率为,有一道题答对的概率为??????????????????????????? 2分
∴ ????????????????????????????????????????????????????????? 5分
(2) ?????????????????????????????????????????????????????? 7分
?????????????????????????????? 9分
??????????????????????????????? 11分
∴ 的分布列为
35
40
45
50
P
???????????????????????????????????? 13分
18.(1) 证明:取CE中点M,则 FMDE
∵ ABDE ∴ ABFM
∴ ABMF为平行四边形
∴ AF∥BM
又AF平面BCE,BM平面BCE
∴ AF∥平面BCE??????????????????????????????????????????????????????????????????? 4分
(2) 解:过C作l∥AB,则l∥DE ∴ 平面ABC平面CDE = l
∵ AB⊥平面ACD ∴ l⊥平面ACD
∴ ∠ACD即为所求二面角的平面角,为60?????????????????????????????????? 8分
(3) 解:设B在平面AFE内的射影为,作MN⊥FE于N,作CG⊥EF于G.
∴ BE与平面AFE所成角为
∵ AF⊥CD,AF⊥DE ∴ AF⊥平面CDE ∴ AF⊥MN ∴ MN⊥平面AEF
∵ BM∥平面AEF ∴
由△CGF∽△EDF,得 ∴
而 ∴
∴ ???????????????????????????????????????????????????????????????? 13分
19.解:(1) ?????????????????????????????????????????????????????????????????????????? 2分
由 由
∴ 上单调递减,在上单调递增????????????????????????? 5分
(2) ?????????????????????????????????????????? 6分
∵ 上递减 ∴ ??????????????? 9分
设 ∵ ∴上递减
∴ 即
∴ ???????????????????????????????????????????????????????????????????????? 12分
20.解:(1) B(0,? b),A(,0),F(c,0),P(c,)
∵ ∴ D为线段FP的中点,
∴ D为(c,)??????????????????????????????????????????????????????????????????? 2分
∴ ,∴ a = 2b,
∴ ?????????????????????????????????????????????? 5分
(2) a = 2,则b = 1,B(0,?1) 双曲线的方程为 ①
设M(x1,y1),N(x2,y2),C(0,m)
由
由已知???????????????????????????? 7分
设
整理得:
对满足的k恒成立
∴ .
故存在y轴上的点C(0,4),使为常数17.????????????????????? 12分
21.解:(1) ???????????????????????????????????????????????????????????????????????????? 1分
切线方程为与y = kx联立得:
,令y = 0得:xB = 2t????????????????????????????????????????????????? 3分
∴ ??????????????????????????????????????????????????????? 4分
(2) 由??????????????????????????????????????????????????? 5分
两边取倒数得: ∴
∴ 是以为首项,为公比的等比数列(时)
或是各项为0的常数列(k = 3时),此时an = 1
时??????????????????????????????? 7分
当k = 3时也符合上式
∴????????????????????????????????????????????????????????????????? 8分
(3) 作差得
其中
由于 1 < k < 3,∴
∴
当?????????????????????????????????????????????????? 12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com