(2) 若a = 2.过点B的直线l交双曲线于M.N两点.问在y轴上是否存在定点C使为常数?若存在.求出C点的坐标,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

直线l过双曲线=1的右焦点,斜率k=2,若l与双曲线的两个交点分别在左、右两支上,则双曲线的离心率e的取值范围是(    )

A.e>                   B.1<e<

C.1<e<              D.e>

查看答案和解析>>

直线l:y=ax+1与双曲线C:3x2-y2=1相交于A,B两点.
(1)a为何值时,以AB为直径的圆过原点;
(2)是否存在这样的实数a,使A,B关于直线x-2y=0对称,若存在,求a的值,若不存在,说明理由.

查看答案和解析>>

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1、F2,O为坐标原点,点A在双曲线的右支上,点B在双曲线左准线上,
F2O
=
AB
OF2
OA
=
OA
OB

(Ⅰ)求双曲线的离心率e;
(Ⅱ)若此双曲线过C(2,
3
)
,求双曲线的方程;
(Ⅲ)在(Ⅱ)的条件下,D1、D2分别是双曲线的虚轴端点(D2在y轴正半轴上),过D1的直线l交双曲线于点M、N,
D2M
D2N
,求直线l的方程.

查看答案和解析>>

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率e=2,F1,F2是左,右焦点,过F2作x轴的垂线与双曲线在第一象限交于P点,直线F1P与右准线交于Q点,已知
F1P
F2Q
=-
15
64

(1)求双曲线的方程;
(2)设过F1的直线MN分别与左支,右支交于M、N,线段MN的垂线平分线l与x轴交于点G(x0,0),若1≤|NF2|<3,求x0的取值范围.

查看答案和解析>>

直线l:y=kx+1与双曲线c:3x2-y2=1相交于A、B两点.
(1)若以AB为直径的圆过原点,求直线l的方程;
(2)若A、B两点在双曲线的右支上,求直线l的倾斜角的范围.

查看答案和解析>>

2009年4月

一、选择题:本大题共10小题,每题5分,共50分.

1.A    2.D    3.B    4.A    5.D    6.C    7.D    8.B    9.B    10.C

二、填空题:本大题共5小题,每题5分,共25分.

11.                                    12.                                  13.

14.                                  15.①②⑤

三、解答题:本题共6小题,共75分.

16.解:(1) ??????????????????????????????????????? 3分

??????????????????????????????????????????????????????????????????????????? 5分

(2) ????????????????????????????????????????????????????? 8分

????????????????????????????????????????????????????????????????? 9分

???????????????????????????????????????????????????????????????????? 10分

?????????????????????????????????????????????????????????????????????????? 11分

?????????????? 13分

17.解:(1) 有两道题答对的概率为,有一道题答对的概率为??????????????????????????? 2分

????????????????????????????????????????????????????????? 5分

(2) ?????????????????????????????????????????????????????? 7分

?????????????????????????????? 9分

??????????????????????????????? 11分

的分布列为

35

40

45

50

P

???????????????????????????????????? 13分

18.(1) 证明:取CE中点M,则 FMDE

∵ ABDE       ∴ ABFM

∴ ABMF为平行四边形

∴ AF∥BM

又AF平面BCE,BM平面BCE

∴ AF∥平面BCE??????????????????????????????????????????????????????????????????? 4分

(2) 解:过C作l∥AB,则l∥DE     ∴ 平面ABC平面CDE = l

∵ AB⊥平面ACD      ∴ l⊥平面ACD

∴ ∠ACD即为所求二面角的平面角,为60?????????????????????????????????? 8分

(3) 解:设B在平面AFE内的射影为,作MN⊥FE于N,作CG⊥EF于G.

∴ BE与平面AFE所成角为

∵ AF⊥CD,AF⊥DE   ∴ AF⊥平面CDE    ∴ AF⊥MN ∴ MN⊥平面AEF

∵ BM∥平面AEF       ∴

由△CGF∽△EDF,得    ∴

    ∴

???????????????????????????????????????????????????????????????? 13分

19.解:(1) ?????????????????????????????????????????????????????????????????????????? 2分

       由

上单调递减,在上单调递增????????????????????????? 5分

(2) ?????????????????????????????????????????? 6分

上递减     ∴ ??????????????? 9分

    ∵    ∴上递减

 即

???????????????????????????????????????????????????????????????????????? 12分

20.解:(1)  B(0,? b),A(,0),F(c,0),P(c,

      ∴ D为线段FP的中点,

∴ D为(c,)??????????????????????????????????????????????????????????????????? 2分

,∴ a = 2b,

?????????????????????????????????????????????? 5分

(2)  a = 2,则b = 1,B(0,?1)     双曲线的方程为   ①

设M(x1,y1),N(x2,y2),C(0,m)

由已知???????????????????????????? 7分

整理得:

对满足的k恒成立

故存在y轴上的点C(0,4),使为常数17.????????????????????? 12分

21.解:(1) ???????????????????????????????????????????????????????????????????????????? 1分

切线方程为与y = kx联立得:

,令y = 0得:xB = 2t????????????????????????????????????????????????? 3分

??????????????????????????????????????????????????????? 4分

(2) 由??????????????????????????????????????????????????? 5分

两边取倒数得:      ∴

是以为首项,为公比的等比数列(时)

或是各项为0的常数列(k = 3时),此时an = 1

??????????????????????????????? 7分

当k = 3时也符合上式

????????????????????????????????????????????????????????????????? 8分

(3) 作差得

其中

由于 1 < k < 3,∴

?????????????????????????????????????????????????? 12分

 

 


同步练习册答案