因此在每一个区间()是增函数. 查看更多

 

题目列表(包括答案和解析)

解::因为,所以f(1)f(2)<0,因此f(x)在区间(1,2)上存在零点,又因为y=与y=-在(0,+)上都是增函数,因此在(0,+)上是增函数,所以零点个数只有一个方法2:把函数的零点个数个数问题转化为判断方程解的个数问题,近而转化成判断交点个数问题,在坐标系中画出图形


由图看出显然一个交点,因此函数的零点个数只有一个

袋中有50个大小相同的号牌,其中标着0号的有5个,标着n号的有n个(n=1,2,…9),现从袋中任取一球,求所取号码的分布列,以及取得号码为偶数的概率.

查看答案和解析>>

现有命题:若,且在两个区间上都是增函数,则在区间上也是增函数。若认为此命题为真,请给出证明;若认为此命题为假,请对原命题的条件予以补充(不允许变更命题的内容,不允许举例)使原命题成立,先写出补充条件,然后给出证明。

查看答案和解析>>

函数f(x)是定义在[0,1]上的函数,满足f(x)=2f(
x
2
)
,且f(1)=1,在每一个区间(
1
2i
 , 
1
2i-1
]
(i=1,2,3,…)上,y=f(x)的图象都是斜率为同一常数k的直线的一部分,记直线x=
1
2n
x=
1
2n-1
,x轴及函数y=f(x)的图象围成的梯形面积为an(n=1,2,3,…),则数列{an}的通项公式为
an=
4-k
22n+1
an=
4-k
22n+1

查看答案和解析>>

(2008•南京模拟)函数f (x)是定义在[0,1]上的函数,满足f (x)=2f (
x
2
),且f (1)=1,在每一个区间(
1
2k
1
2k-1
](k=1,2,3,…)上,y=f (x)的图象都是斜率为同一常数m的直线的一部分,记直线x=
5
2n
,x=
1
2n-1
,x轴及函数y=f (x)的图象围成的梯形面积为an(n=1,2,3,…),则数列{an}的通项公式为
12-m
22n+1
12-m
22n+1
.(用最简形式表示)

查看答案和解析>>

关于函数f(x)=-tan2x,有下列说法:
①f(x)的定义域是{x∈R|x≠
π
2
+kπ,k∈Z}②f(x)是奇函数 ③在定义域上是增函数  ④在每一个区间(-
π
4
+
2
π
4
+
2
)(k∈Z)上是减函数  ⑤最小正周期是π其中正确的是(  )
A、①②③B、②④⑤
C、②④D、③④⑤

查看答案和解析>>


同步练习册答案