解:(Ⅰ).由题意知. 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

(本小题满分14分)

  已知:函数),

  (1)若函数图象上的点到直线距离的最小值为,求的值;

  (2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;

  (3)对于函数定义域上的任意实数,若存在常数,使得不等式都成立,则称直线为函数的“分界线”。设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分)
  已知:函数),
  (1)若函数图象上的点到直线距离的最小值为,求的值;
  (2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
  (3)对于函数定义域上的任意实数,若存在常数,使得不等式都成立,则称直线为函数的“分界线”。设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

(1)已知函数f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)图象上的任意两点.
①试求直线PQ的斜率kPQ的取值范围;
②求f(x)图象上任一点切线的斜率k的范围;
(2)由(1)你能得出什么结论?(只须写出结论,不必证明),试运用这个结论解答下面的问题:已知集合MD是满足下列性质函数f(x)的全体:若函数f(x)的定义域为D,对任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
①当D=(0,1)时,f(x)=lnx是否属于MD,若属于MD,给予证明,否则说明理由;
②当D=(0,
3
3
)
,函数f(x)=x3+ax+b时,若f(x)∈MD,求实数a的取值范围.

查看答案和解析>>

(1)已知函数f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)图象上的任意两点.
①试求直线PQ的斜率kPQ的取值范围;
②求f(x)图象上任一点切线的斜率k的范围;
(2)由(1)你能得出什么结论?(只须写出结论,不必证明),试运用这个结论解答下面的问题:已知集合MD是满足下列性质函数f(x)的全体:若函数f(x)的定义域为D,对任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
①当D=(0,1)时,f(x)=lnx是否属于MD,若属于MD,给予证明,否则说明理由;
②当数学公式,函数f(x)=x3+ax+b时,若f(x)∈MD,求实数a的取值范围.

查看答案和解析>>


同步练习册答案