5.已知双曲线以坐标原点为顶点.以曲线的顶点为焦点的抛物线与曲线的渐近线的一个交点坐标为(4.4).则双曲线的离心率为 查看更多

 

题目列表(包括答案和解析)

已知双曲线以坐标原点为顶点,以曲线的顶点为焦点的抛物线与曲线渐近线的一个交点坐标为(4,4),则双曲线的离心率为                

A.               .              C.               D.

查看答案和解析>>

已知双曲线C的两条渐近线都过原点,且都以点A(
2
,0)为圆心,1为半径的圆相切,双曲线的一个顶点A′与A点关于直线y=x对称.
(1)求双曲线C的方程;
(2)设直线l过点A,斜率为k,当0<k<1时,双曲线C的上支上有且仅有一点B到直线l的距离为
2
,试求k的值及此时B点的坐标.

查看答案和解析>>

已知双曲线方程为
x2
a2
-
y2
b2
=1(a>0,b>0)
,椭圆C以该双曲线的焦点为顶点,顶点为焦点.
(1)当a=
3
,b=1时,求椭圆C的方程;
(2)在(1)的条件下,直线l:y=kx+
1
2
与y轴交于点P,与椭圆交与A,B两点,若O为坐标原点,△AOP与△BOP面积之比为2:1,求直线l的方程;
(3)若a=1,椭圆C与直线l':y=x+5有公共点,求该椭圆的长轴长的最小值.

查看答案和解析>>

已知双曲线的两条渐近线经过坐标原点,且与以A(
2
,0)为圆心,1为半径的圆相切,双曲线的一个顶点A'与点A关于直线y=x对称.
(1)求双曲线的方程;
(2)是否存在过A点的一条直线交双曲线于M、N两点,且线段MN被直线x=-1平分.如果存在,求出直线的方程;如果不存在,说明理由.

查看答案和解析>>

已知双曲线C1以点A(0,1)为顶点,且过点B(-
3
,2)

(1)求双曲线C1的标准方程;
(2)求离心率为
2
2
,且以双曲线C1的焦距为短轴长的椭圆的标准方程;
(3)已知点P在以点A为焦点、坐标原点为顶点的抛物线C2上运动,点M的坐标为(2,3),求PM+PA的最小值及此时点P的坐标.

查看答案和解析>>

一、 C B C B B AC D A B    C D

二、13.           14.              15.         16.3

三、17(Ⅰ)

            = =

得,

.

故函数的零点为.         ……………………………………6分

(Ⅱ)由

.又

       

         , 

                   ……………………………………12分

18. 由三视图可知:,底面ABCD为直角梯形,, BC=CD=1,AB=2

(Ⅰ)∵  PB⊥DA,梯形ABCD中,PB=BC=CD=1,AB=2 ∴BD=

又可得DA=,∴DA⊥BD ,∴DA⊥平面PDB,

∴  AD⊥PD                                   ……………………………4分

 

 (Ⅱ)  CM∥平面PDA  理由如下:

取PB中点N,连结MN,DN,可证MN∥CD且MN=CD,∴CM∥DN,∴CM∥平面PDA

                                                                 …………8分

 (Ⅲ)            

                                                            ……………12分

19. (Ⅰ)九年级(1)班应抽取学生10名; ………………………2分

(Ⅱ)通过计算可得九(1)班抽取学生的平均成绩为16.5,九(2)班抽取学生的平均成绩为17.2.由此可以估计九(1)班学生的平均成绩为16.5, 九(2)班学生的平均成绩为      17.2                                                     ………………………6分

(Ⅲ)基本事件总数为15,满足条件的事件数为9 ,故所求事件的概率为

………………………………12分

20. (Ⅰ)证明 设

相减得  

注意到  

有        

即                           …………………………………………5分

(Ⅱ)①设

由垂径定理,

即       

化简得  

轴平行时,的坐标也满足方程.

故所求的中点的轨迹的方程为

    …………………………………………8分

②      假设过点P作直线与有心圆锥曲线交于两点,且P为的中点,则

         

由于 

直线,即,代入曲线的方程得

             

            

故这样的直线不存在.                      ……………………………………12分

21.(Ⅰ)函数的定义域为

由题意易知,   得    ;

                             当时,时,

故函数的单调增区间为,单调减区间为.   …………………………6分

   (Ⅱ)

①     当时,递减,无极值.

②     当时,由

时,时,

时,函数的极大值为

;

函数无极小值.                                 …………………………13分

22.(Ⅰ)            

                          …………………………………………4分

(Ⅱ) ,

          ……………………………8分

 (Ⅲ)假设

,可求

故存在,使恒成立.

                                   ……………………………………13分

 

 

 

 


同步练习册答案