题目列表(包括答案和解析)
已知中,,.设,记.
(1) 求的解析式及定义域;
(2)设,是否存在实数,使函数的值域为?若存在,求出的值;若不存在,请说明理由.
【解析】第一问利用(1)如图,在中,由,,
可得,
又AC=2,故由正弦定理得
(2)中
由可得.显然,,则
1当m>0的值域为m+1=3/2,n=1/2
2当m<0,不满足的值域为;
因而存在实数m=1/2的值域为.
设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.
(Ⅰ)若直线与的斜率之积为,求椭圆的离心率;
(Ⅱ)若,证明直线的斜率 满足
【解析】(1)解:设点P的坐标为.由题意,有 ①
由,得,
由,可得,代入①并整理得
由于,故.于是,所以椭圆的离心率
(2)证明:(方法一)
依题意,直线OP的方程为,设点P的坐标为.
由条件得消去并整理得 ②
由,及,
得.
整理得.而,于是,代入②,
整理得
由,故,因此.
所以.
(方法二)
依题意,直线OP的方程为,设点P的坐标为.
由P在椭圆上,有
因为,,所以,即 ③
由,,得整理得.
于是,代入③,
整理得
解得,
所以.
1 |
2 |
P(K2≥k) | 0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.535 | 7.879 | 10. 828 |
A、1个 | B、2个 | C、3个 | D、4个 |
? |
y |
? |
y |
. |
x |
. |
y |
i2+i3+i4 |
1-i |
1 |
2 |
1 |
2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com