所以在中.求得: 查看更多

 

题目列表(包括答案和解析)

中,满足,边上的一点.

(Ⅰ)若,求向量与向量夹角的正弦值;

(Ⅱ)若=m  (m为正常数) 且边上的三等分点.,求值;

(Ⅲ)若的最小值。

【解析】第一问中,利用向量的数量积设向量与向量的夹角为,则

=,得,又,则为所求

第二问因为=m所以

(1)当时,则= 

(2)当时,则=

第三问中,解:设,因为

所以于是

从而

运用三角函数求解。

(Ⅰ)解:设向量与向量的夹角为,则

=,得,又,则为所求……………2

(Ⅱ)解:因为=m所以

(1)当时,则=-2分

(2)当时,则=--2分

(Ⅲ)解:设,因为

所以于是

从而---2

==

=…………………………………2

,则函数,在递减,在上递增,所以从而当时,

 

查看答案和解析>>

中,分别为内角所对的边,且.现给出三个条件:①; ②;③.试从中选出两个可以确定的条件,并以此为依据求的面积.(只需写出一个选定方案即可)你选择的条件是            (用序号填写);由此得到的的面积为           

 

查看答案和解析>>

中,分别为内角所对的边,且.现给出三个条件:①; ②;③.试从中选出两个可以确定的条件,并以此为依据求的面积.(只需写出一个选定方案即可)你选择的条件是             (用序号填写);由此得到的的面积为            .

 

查看答案和解析>>

中,分别为内角所对的边,且.现给出三个条件:①; ②;③.试从中选出两个可以确定的条件,并以此为依据求的面积.(只需写出一个选定方案即可)你选择的条件是            (用序号填写);由此得到的的面积为           

查看答案和解析>>

中,分别为内角所对的边,且.现给出三个条件:①; ②;③.试从中选出两个可以确定的条件,并以此为依据求的面积.(只需写出一个选定方案即可)你选择的条件是             (用序号填写);由此得到的的面积为           

查看答案和解析>>


同步练习册答案