所以 对恒成立..即 查看更多

 

题目列表(包括答案和解析)

给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f(x)=(f′(x))′,若f(x)<0在D上恒成立,则称f(x)在D上为凸函数.对于给出的四个函数:
①f(x)=sinx+cosx,②f(x)=lnx-2x,③f(x)=-x4+x3-x2+1,④f(x)=-xe-x
以上四个函数在(0,
π2
)
上是凸函数的是
①②③
①②③
(请把所有正确的序号均填上)

查看答案和解析>>

给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f(x)=(f′(x))′,若f(x)<0在D上恒成立,则称f(x)在D上为凸函数.对于给出的四个函数:
①f(x)=sinx+cosx,②f(x)=lnx-2x,③f(x)=-x4+x3-x2+1,④f(x)=-xe-x
以上四个函数在(0,
π
2
)
上是凸函数的是______(请把所有正确的序号均填上)

查看答案和解析>>

给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f(x)=(f′(x))′,若f(x)<0在D上恒成立,则称f(x)在D上为凸函数.对于给出的四个函数:
①f(x)=sinx+cosx,②f(x)=lnx-2x,③f(x)=-x4+x3-x2+1,④f(x)=-xe-x
以上四个函数在上是凸函数的是    (请把所有正确的序号均填上)

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>


同步练习册答案