题目列表(包括答案和解析)
已知函数,其中.
(1)若在处取得极值,求曲线在点处的切线方程;
(2)讨论函数在的单调性;
(3)若函数在上的最小值为2,求的取值范围.
【解析】第一问,因在处取得极值
所以,,解得,此时,可得求曲线在点
处的切线方程为:
第二问中,易得的分母大于零,
①当时, ,函数在上单调递增;
②当时,由可得,由解得
第三问,当时由(2)可知,在上处取得最小值,
当时由(2)可知在处取得最小值,不符合题意.
综上,函数在上的最小值为2时,求的取值范围是
(14分)已知函数f(x)=的图像在点P(0,f(0))处的切线方程为y=3x-2
(Ⅰ)求实数a,b的值;
(Ⅱ)设g(x)=f(x)+是[)上的增函数。
(i)求实数m的最大值;
(ii)当m取最大值时,是否存在点Q,使得过点Q的直线若能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,写出点Q的坐标(可以不必说明理由);若不存在,说明理由。
已知M、N两点的坐标分别是是常数,令是坐标原点.
(Ⅰ)求函数的解析式,并求函数在上的单调递增区间;
(Ⅱ)当时,的最大值为,求a的值,并说明此时的图象可由函数的图象经过怎样的平移和伸缩变换而得到?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com