的导函数为.不等式恒成立.求实数m的取值范围. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=alnx,g(x)=
12
x2
(1)记g′(x)为g(x)的导函数,若不等式f(x)+2g′(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围;
(2)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.

查看答案和解析>>

设函数y=f(x)的定义域为D,若对于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(a)=0.研究并利用函数f(x)=x3-3x2-sin(πx)的对称中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=
-8046
-8046

查看答案和解析>>

设函数f(x)=alnx,g(x)=
1
2
x2
(1)记g′(x)为g(x)的导函数,若不等式f(x)+2g′(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围;
(2)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.

查看答案和解析>>

设函数f(x)的定义域为R,若|f(x)|≤|x|对任意的实数x均成立,则称函数f(x)为Ω函数.

(Ⅰ)求证:若函数f(x)为Ω函数,则f(0)=0;

(Ⅱ)试判断函数f1(x)=xsinx、f2(x)=和f3(x)=中哪些是Ω函数,并说明理由;

(Ⅲ)若f(x)是奇函数且是定义在R上的可导函数,函数f(x)的导数f′(x)满足|f′(x)|<1,试判断函数f(x)是否为Ω函数,并说明理由.

查看答案和解析>>

设函数f(x)=alnx,g(x)=x2
(1)记g′(x)为g(x)的导函数,若不等式f(x)+2g′(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围;
(2)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.

查看答案和解析>>


同步练习册答案