题目列表(包括答案和解析)
(19)(本小题满分12分)
为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望,标准差为。
(Ⅰ)求n,p的值并写出的分布列;
(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率
19(本小题满分12分)
P是以为焦点的双曲线C:(a>0,b>0)上的一点,已知=0,.
(1)试求双曲线的离心率;
(2)过点P作直线分别与双曲线两渐近线相交于P1、P2两点,当,= 0,求双曲线的方程.
(19) (本小题满分12分)某厂家根据以往的经验得到有关生产销售规律如下:每生产(百台),其总成本为(万元),其中固定成本2万元,每生产1百台需生产成本1万元(总成本固定成本生产成本);销售收入(万元)满足:(Ⅰ)要使工厂有盈利,求的取值范围;
(Ⅱ)求生产多少台时,盈利最多?
(本小题满分12分)
某初级中学有三个年级,各年级男、女生人数如下表:
初一年级 | 初二年级 | 初三年级 | |
女生 | 370 | z | 200 |
男生 | 380 | 370 | 300 |
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.
(1)求z的值;
(2)用分层抽样的方法在初三年级中抽取一个容量为5的样本,将该样本看成一个总体,从中任选2名学生,求至少有1名女生的概率;
(3)用随机抽样的方法从初二年级女生中选出8人,测量它们的左眼视力,结果如下:1.2, 1.5, 1.2, 1.5, 1.5, 1.3, 1.0, 1.2.把这8人的左眼视力看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.1的概率.
(本小题满分12分)
某初级中学共有学生2000名,各年级男、女生人数如下表:
初一年级 | 初二年级 | 初三年级 | |
女生 | 373 | x | Y |
男生 | 377 | 370 | z |
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19。 (I)求x的值; (II)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (III)已知,求初三年级中女生比男生多的概率。
一、 BCCC,ADBA
二、 30 2 1 50 96 96
三、 解答题
16 (1)
ω
(2)
17 (I)以D为原点,DA,DC,DD1所在直线为x轴,y轴,z轴,建立系
E点坐标为(1,1,1).
(2) 略
(3)二面角D1―BF―C的余弦值为
18 (1)
(2)
(3)(Ⅰ)
当且仅当时,即x=7时等号成立.
到第7年,年平均盈利额达到最大值,工厂共获利12×7+30=114万元.……10分
(Ⅱ)
故到第10年,盈利额达到最大值,工厂获利102+12=114万元 ……11分
盈利额达到的最大值相同,而方案Ⅰ所用的时间较短,故方案Ⅰ比较合理.…12分
19(1)椭圆的方程是:.
(2),, 为常数.
20 (1)用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,
至少有1人面试合格的概率是
(2)∴的分布列是
0
1
2
3
的期望
21(1) (2)(2)①,.当时,. 假设,则.
由数学归纳法证明为常数数列,是等差数列,其通项为. ……8分
②, .
当时,. 假设,则 .
由数学归纳法,得出数列.……………10分
又,,
即 ………12分
.
,. ………………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com