15.如图2.已知A.D.B.C分别为过抛物线焦点F的直线与该抛物线和圆的交点.则 . 查看更多

 

题目列表(包括答案和解析)

如图2-2-3,已知ABCD为平行四边形,过点A和B的圆与AD、BC分别交于E、F.求证:C、D、E、F四点共圆.

图2-2-3

查看答案和解析>>

如图2-5-11,已知⊙O1和⊙O2相交于点A、B,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.

图2-5-11

(1)求证:AD∥EC;

(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.

查看答案和解析>>

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点.(1,
2
2
)
,离心率为
2
2
,左、右焦点分别为F1、F2.点p为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.
(1)求椭圆的标准方程;
(2)设直线PF1、PF2的斜线分别为k1、k2.①证明:
1
k1
-
3
k2
=2
;②问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

精英家教网已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(I)求抛物线G的方程;
(II)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y-1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(III)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

查看答案和解析>>

精英家教网已知ABCD,A'B'C'D'都是正方形(如图),而A'、B'、C'、D'分别把AB、BC、CD、DA分为m:n,设AB=1.
(1)求A'B'C'D'的面积;
(2)求证A'B'C'D'的面积不小于
12

查看答案和解析>>

 

一、选择题:本大题共12个小题,每小题5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空题:本大题共4个小题,每小题4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答题:本大题共6个小题,共74分.解答要写出文字说明,证明过程或演算步骤.

 

17.解:(Ⅰ)∵l1∥l2

,????????????????????????????????????????????????????????????????????????????????????????? 3分

.????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵

,∴,当且仅当时取"=".??????????? 8分

,∴,?????????????????????????????????????????? 10分

,当且仅当时取"=".

故△ABC面积取最大值为.??????????????????????????????????????????????????????????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三个球中数字最大者为3.

①三次取球均出现最大数字为3的概率;??????????????????????????????????????? 1分

②三次取球中有2次出现最大数字3的概率;???????????????????? 3分

③三次取球中仅有1次出现最大数字3的概率.????????????????? 5分

∴P(ξ=3)=P1+P2+P3=.?????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)在ξ=k时, 利用(Ⅰ)的原理可知:

(k=1、2、3、4).???????? 8分

则ξ的概率分布列为:

ξ

1

2

3

4

P

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 10分

∴ξ的数学期望Eξ=1×+2×+3×+4× = .???????????????????????????????? 12分

 

19.(Ⅰ)证明:∵四边形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等边三角形,设O是AA1的中点,连接BO,则BO⊥AA1. 2分

∵侧面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面积为,知C到AA1的距离为,∴△AA1C1是等边三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB两两垂直,以O为原点,建立如图空间直角坐标系,则.则.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

是平面ABC的一个法向量,

,则.设A1到平面ABC的距离为d.

.??????????????????????????????????????????????????????????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一个法向量是,又平面ACC1的一个法向量.   9分

.???????????????????????????????????????????????????????????? 11分

∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

 

20.解:(Ⅰ),对称轴方程为,故函数在[0,1]上为增函数,∴.?????????????????????????????????????????????????????????????????????????????????????? 2分

时,.??????????????????????????????????????????????????????????????????????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????????????????????????????????????????? 4分

,∴数列是以为首项,为公比的等比数列.

,∴.?????????????????????????????????????????????????? 6分

(Ⅱ)∵,∴

???????????????????????????????????????????????????????? 7分

可知:当时,;当时,;当时,

?????????????????????????????????????????????????????????????????????????? 10分

可知存在正整数或6,使得对于任意的正整数n,都有成立.???????????? 12分

 

21.解:(Ⅰ)设

.∵

,∴,∴.??????????????????????????????????????????????????????????????? 2分

则N(c,0),M(0,c),所以

,则

∴椭圆的方程为.??????????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)∵圆O与直线l相切,则,即,????????????????????????????????? 5分

消去y得

∵直线l与椭圆交于两个不同点,设

,???????????????????????????????????????????????????????????????? 7分

.?????????????????? 8分

.???????????????????????????????????????? 9分

(或).

,则

,则

时单调递增,????????????????????????????????????????????????????????????????????????? 11分

∴S关于μ在区间单调递增,

.??????????????????????????????????????????????????????????????????????????????????????????????????? 12分

(或

∴S关于u在区间单调递增,?????????????????????????????????????????????????????????????????????? 11分

.)????????????????????????????????????????????????????????? 12分

 

22.解:(Ⅰ)因为,则,     1分

时,;当时,

上单调递增;在上单调递减,

∴函数处取得极大值.????????????????????????????????????????????????????????????????????? 2分

∵函数在区间(其中)上存在极值,

解得.????????????????????????????????????????????????????????????????????????????????? 3分

(Ⅱ)不等式,即为,?????????????????????????????????????????? 4分

,∴,??????? 5分

,则,∵,∴上递增,

,从而,故上也单调递增,

.???????????????????????????????????????????????????????????????????????????????????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??????????? 8分

,????????????????????????????????????????????????????? 9分

………

,?????????????????????????????????????????????????????????????????????????????????? 10分

叠加得:

.???????????????????????????????????????????????????????????????????????? 12分

.????????????????????????????????????????????????????????????????????????? 14分

 

 

 

 

 

 

 

 

 

 


同步练习册答案