题目列表(包括答案和解析)
3 |
3 |
已知椭圆经过点(0,),离心率为,经过椭圆C的右焦点F的直线l交椭圆于A、B两点,点A、F、B在直线x=4上的射影依次为点D、K、E.
(1)求椭圆C的方程;
(2)若直线l交y轴于点M,且,当直线l的倾斜角变化时,探求的值是否为定值?若是,求出的值,否则,说明理由;
(3)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
(本题满分14分)
已知椭圆经过点(0,),离心率为,经过椭圆C的右焦点F的直线l交椭圆于A、B两点,点A、F、B在直线x=4上的射影依次为点D、K、E.
(1)求椭圆C的方程;
(2)若直线l交y轴于点M,且,当直线l的倾斜角变化时,探求的值是否为定值?若是,求出的值,否则,说明理由;
(3)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
三、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
D
A
B
B
D
B
D
A
B
C
B
四、填空题
13.2 14. 31 15. 16. 2.
三、解答题
17.17.解:(Ⅰ).
的最小正周期.
(Ⅱ)由解得
∴ 的单调递增区间为。
18.(Ⅰ)解:设“从甲盒内取出的2个球均为红球”为事件,“从乙盒内取出的2个球均为红球”为事件.由于事件相互独立,且
,,
故取出的4个球均为红球的概率是
.
(Ⅱ)解:设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”为事件,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件.由于事件互斥,且
,.
故取出的4个红球中恰有4个红球的概率为
.
19.(Ⅰ)取DC的中点E.
∵ABCD是边长为的菱形,,∴BE⊥CD.
∵平面, BE平面,∴ BE.
∴BE⊥平面PDC.∠BPE为求直线PB与平面PDC所成的角.
∵BE=,PE=,∴==.
(Ⅱ)连接AC、BD交于点O,因为ABCD是菱形,所以AO⊥BD.
∵平面, AO平面,
∴ PD. ∴AO⊥平面PDB.
作OF⊥PB于F,连接AF,则AF⊥PB.
故∠AFO就是二面角A-PB-D的平面角.
∵AO=,OF=,∴=.
20.解:(1)令得所求增区间为,。
(2)要使当时恒成立,只要当时 。
由(1)知
当时,是增函数,;
当时,是减函数,;
当时,是增函数,
由,因此故。
21. 证明:由是关于x的方程的两根得
。
,
是等差数列。
(2)由(1)知
。
。
又符合上式, 。
(3) ①
②
①―②得 。
。
22. (1)∵
∴
令,∴或
若,
在点附近,当时,;当时,
∴是函数的极小值点,极小值为;
在点附近,当时,;当时,
∴是函数的极大值点,极大值为
若,易知,
是函数的极大值点,极大值为;
是函数的极小值点,极小值为
(2)若在上至少存在一点使得成立,
则在上至少存在一解,即在上至少存在一解
由(1)知,
当时,函数在区间上递增,且极小值为
∴此时在上至少存在一解;
当时,函数在区间上递增,在上递减,
∴要满足条件应有函数的极大值,即
综上,实数的取值范围为或。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com