题目列表(包括答案和解析)
(本小题满分12分)二次函数的图象经过三点.
(1)求函数的解析式(2)求函数在区间上的最大值和最小值
(本小题满分12分)已知等比数列{an}中,
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}的前n项和为Sn,证明:;
(Ⅲ)设,证明:对任意的正整数n、m,均有(本小题满分12分)已知函数,其中a为常数.
(Ⅰ)若当恒成立,求a的取值范围;
(Ⅱ)求的单调区间.(本小题满分12分)
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.(本小题满分12分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,且,圆O是以为直径的圆,直线与圆O相切,并且与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m
(2)当时,求弦长|AB|的取值范围.
一、选择题(每小题5分,共50分)
题号
1
2
3
4
5
6
7
8
9
10
答案
C
B
A
D
B
D
A
B
B
A
二、填空题(每小题4分,共24分)
11.; 12.; 13.; 14. 15. 16.1
三、解答题(本大题共6小题,共76分,以下各题为累计得分,其他解法请相应给分)
17.解(I)由题意得即
又
(Ⅱ)
于是
又又
又
18.解:(I)任取3个球的基本情况有(1,2,3),(1,2,3),(1,2,4),(1,2,5),(1,3,3)(1,3,4)
(1,3,5),(1,3,4),(1,3,5),(1,4,5),(2,3,3),(2,3,4),(2,3,5),(2,3,4),(2,3,5),(2
,4,5),(3,3,4),(3,3,5),(3,4,5),(3,4,5)共20种,
其中最大编号为4的有(1,2,4),(1,3,4),(1,3,4),(2,3,4),(2,3,4),
(3,3,4)共6种,所以3个球中最大编号为4的概率为
(Ⅱ)3个球中有1个编号为3的有(1,2,3),(1,2,3),(1,3,4),(1,3,5),(1,
3,4),(1,3,5),(2,3,4),(2,3,5),(2,3,4),(2,3,5),(3,4,5),(3,
4,5)共12种
有2个编号为3的有(1,3,3),(2,3,3),(3,3,4),(3,3,5)共4种
所以3个球中至少有个编号为3的概率是
19.解:(I)是长方体,平面,又面,
又是正方形。,又,面
(Ⅱ)
(Ⅲ)连结有
又有上知,
由题意得
于是可得上的高为6
20.解:(I)‘
又令,得
①若,则当或时。当时,
在和内是增函数,在内是减函数,
②若则当或时,当时,
在和内是增函数,在内是减函数
(Ⅱ)当时,在和内是增函数,故
在内是增函数。
由题意得 解得
当时,在和内是增函数,在内是增函数。
由题意得 解得
综上知实数的取值范围为
(21)解:(1)设的公比为,由题意有
解得或(舍)
(Ⅱ),是以2为首项,-1为公差的等差数列
(Ⅲ)显然
又当时,当时,
当时,故当或时
22.解:(I)由题意知故
又设椭圆中心关于直线的对称点为。
于是方程为
由得线段的中点为(2,-1),从而的横坐标为4,
故椭圆的方程为
(Ⅱ)由题意知直线存在斜率,设直线的方程为代入并
整理得
由得又不合题意。
或
设点则
由①知
直线方程为
令得将代入
整理得
再将代入计算得
直线与轴相交于定点(1,0)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com