(Ⅲ)求三棱锥的体积 查看更多

 

题目列表(包括答案和解析)

三棱锥P-ABC,底面ABC为边长为2
3
的正三角形,平面PBC⊥平面ABC,PB=PC=2,D为AP上一点,AD=2DP,O为底面三角形中心.
(Ⅰ)求证DO∥面PBC;
(Ⅱ)求证:BD⊥AC;
(Ⅲ)求面DOB截三棱锥P-ABC所得的较大几何体的体积.

查看答案和解析>>

三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;

(2)若,PB与底面ABC成60°角,分别是的中点,是线段上任意一动点(可与端点重合),求多面体的体积。

 

查看答案和解析>>

三棱锥P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;
(2)若,PB与底面ABC成60°角,分别是的中点,是线段上任意一动点(可与端点重合),求多面体的体积。

查看答案和解析>>

三棱锥P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;
(2)若,PB与底面ABC成60°角,分别是的中点,是线段上任意一动点(可与端点重合),求多面体的体积。

查看答案和解析>>

棱锥的底面是正三角形,边长为1,棱锥的一条侧棱与底面垂直,其余两条侧棱与底面所成角都等于数学公式,设D为BC中点.
(1)求这个棱锥的侧面积和体积;
(2)求异面直线PD与AB所成角的大小.

查看答案和解析>>

一、选择题(每小题5分,共50分)

题号

1

2

3

4

5

6

7

8

9

10

答案

C

B

A

D

B

D

A

B

B

A

二、填空题(每小题4分,共24分)

11.;    12.;     13.;    14.    15.    16.1

三、解答题(本大题共6小题,共76分,以下各题为累计得分,其他解法请相应给分)

17.解(I)由题意得

(Ⅱ)

于是

18.解:(I)任取3个球的基本情况有(1,2,3),(1,2,3),(1,2,4),(1,2,5),(1,3,3)(1,3,4)

(1,3,5),(1,3,4),(1,3,5),(1,4,5),(2,3,3),(2,3,4),(2,3,5),(2,3,4),(2,3,5),(2

,4,5),(3,3,4),(3,3,5),(3,4,5),(3,4,5)共20种,

 其中最大编号为4的有(1,2,4),(1,3,4),(1,3,4),(2,3,4),(2,3,4),

(3,3,4)共6种,所以3个球中最大编号为4的概率为

(Ⅱ)3个球中有1个编号为3的有(1,2,3),(1,2,3),(1,3,4),(1,3,5),(1,

3,4),(1,3,5),(2,3,4),(2,3,5),(2,3,4),(2,3,5),(3,4,5),(3

4,5)共12种

有2个编号为3的有(1,3,3),(2,3,3),(3,3,4),(3,3,5)共4种

所以3个球中至少有个编号为3的概率是

19.解:(I)是长方体,平面,又

是正方形。,又

(Ⅱ)

(Ⅲ)连结

又有上知

由题意得

于是可得上的高为6

20.解:(I)

,得

①若,则当。当时,

内是增函数,在内是减函数,

②若则当时,时,

内是增函数,在内是减函数

(Ⅱ)当时,内是增函数,

内是增函数。

由题意得  解得

时,内是增函数,内是增函数。

由题意得 解得

综上知实数的取值范围为

(21)解:(1)设的公比为,由题意有

解得(舍)

(Ⅱ)是以2为首项,-1为公差的等差数列

(Ⅲ)显然

时,时,

时,故当

22.解:(I)由题意知

设椭圆中心关于直线的对称点为

于是方程为

得线段的中点为(2,-1),从而的横坐标为4,

椭圆的方程为

(Ⅱ)由题意知直线存在斜率,设直线的方程为代入

整理得

不合题意。

设点

由①知

直线方程为

代入

整理得

再将代入计算得

直线轴相交于定点(1,0)

 

 

 

 

 


同步练习册答案