若有穷数列是正整数).满足即(是正整数.且)就称该数列为“对称数列 查看更多

 

题目列表(包括答案和解析)

若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整数,且1≤i≤n),就称该数列为“对称数列”.已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11试写出{bn}所有项
2,5,8,11,8,5,2
2,5,8,11,8,5,2

查看答案和解析>>

若有穷数列是正整数),满足

,即是正整数,且),就称该数列为“对称数列”.

(1)已知数列是项数为7的对称数列,且成等差数列,,试写出的每一项.

(2)已知是项数为的对称数列,且构成首项为50,公差为的等差数列,数列的前项和为,则当为何值时,取到最大值?最大值为多少?

(3)对于给定的正整数,试写出所有项数不超过的对称数列,使得成为数列中的连续项;当时,试求其中一个数列的前2008项和

 

查看答案和解析>>

若有穷数列是正整数),满足

,即是正整数,且),就称该数列为“对称数列”.

(1)已知数列是项数为7的对称数列,且成等差数列,,试写出的每一项.

(2)已知是项数为的对称数列,且构成首项为50,公差为的等差数列,数列的前项和为,则当为何值时,取到最大值?最大值为多少?

(3)对于给定的正整数,试写出所有项数不超过的对称数列,使得成为数列中的连续项;当时,试求其中一个数列的前2008项和

查看答案和解析>>

若有穷数列a1,a2,…,an(n是正整数),满足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整数,且1≤i≤n),就称该数列为“对称数列”。
(1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项;
(2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1,…,c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22,…,2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008

查看答案和解析>>

对于项数为的有穷数列数集,记,即中的最大值,并称数列的控制数列.如的控制数列是.
(1)若各项均为正整数的数列的控制数列为,写出所有的
(2)设的控制数列,满足为常数,).求证:.

查看答案和解析>>

一、选择题(每小题5分,共50分)

题号

1

2

3

4

5

6

7

8

9

10

答案

C

B

A

A

D

C

D

B

C

A

二、填空题(每小题4分,共24分)

11   12  10    13 144    14      15

16  540

三、 解答题(共76分,以下各题文累积得分,其他解法请相应给分)

17解:(I)由题意得,即,……3分

       又,……4分

       ……6分

      (II)

           于是

           又……8分

……10分

……12分

18 解:(I) 最大编号分别为3,4,5,6。,……2分

    ……4分

  ,……6分 ……8分,即分布列为

3

4

5

6

 

 (II)的数字期望……10分

       的方差

 

 

……12分

19 解:(I)证明:连结是长方体,

       

         又,又是正方形,

       

        ,即……3分

        又……6分

(II)如图,以为原点建系,由题意的

         ……6分

        于是

        ,设

     不妨设

     ……8分

     设,不妨设

     ……9分

的夹角,则……11分

据分析二面角是锐角,二面角的余弦值是……12分

 

20 解:(I)由题意知……1分

   又设椭圆中心关于直线的对称点为

 于是方程为……2分

得线段的中点为(2,-1),从而的横坐标为4

椭圆的方程为=1……4分

(II)由题意知直线存在斜率,设直线的方程为并整理得   ①……6分

,得不合题意

……8分

设点,则

由①知……9分

直线方程为……10分

,将代入

整理得 ,再将代入计算得

直线 轴相交于顶点(1,0),……12分

21解:(I) ……2分

  

①     ,则当时,

 

 

                      

        

内是增函数,在 内是减函数 ,……4分

②     若

内是增函数,在内是减函数……6分

(II)由题意知……7分

恰有一根(含重根 )

……8分

的值域为内是增函数,内是增函数,

由题意的解得……12分

内是增函数,内是增函数

由题意得解得

综上知实数的取值范围为……14分

22 解(I)设公差为,由……1分

数列为3,5,7,9,7,5,3,……2分

(II)……3分

=……4分

(III)所有可能的“对称数列”是①1,2,22

       ②

       ③

       ④……9分

       对于②当

对于③当时,

对于④当时,

 

 

 

 


同步练习册答案