题目列表(包括答案和解析)
已知函数在处切线斜率为-1.
(I) 求的解析式;
(Ⅱ)设函数的定义域为,若存在区间,使得在上的值域也是,则称区间为函数的“保值区间”
(ⅰ)证明:当时,函数不存在“保值区间”;
(ⅱ)函数是否存在“保值区间”?若存在,写出一个“保值区间”(不必证明);若不存在,说明理由.
已知函数在处切线斜率为-1.
(I)求的解析式;
(Ⅱ)设函数的定义域为,若存在区间,使得在上的值域也是,则称区间为函数的“保值区间”
(ⅰ)证明:当时,函数不存在“保值区间”;
(ⅱ)函数是否存在“保值区间”?若存在,写出一个“保值区间”(不必证明);若不
存在,说明理由.
设、是函数的两个极值点.
(I)若,求函数的解析式;
(II)若,求的最大值;
(III)设函数,,当时,.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com