设函数二次函数 查看更多

 

题目列表(包括答案和解析)

(本题满分13分)
设函数
(Ⅰ)求函数的最小正周期;
(Ⅱ)当时,求函数的最大值及取得最大值时的的值.

查看答案和解析>>

.(本题满分13分)设函数,方程f(x)=x有唯一的解,

  已知f(xn)=xn+1(n∈N﹡)且f(xl)=

  (1)求证:数列{)是等差数列;

  (2)若,求Sn=b1+b2+b3+…+bn

  (3)在(2)的条件下,是否存在最小正整数m,使得对任意n∈N﹡,有成立,若存在,求出m的值;若不存在,请说明理由。

 

 

 

查看答案和解析>>

(本题满分13分)设函数,且,求证:(1)

(2)函数在区间内至少有一个零点;

(3)设是函数的两个零点,则.

 

查看答案和解析>>

(本题满分13分) 设函数.

(1)求上的值域.

(2)设A,B,C为ABC的三个内角,若角C满足且边,求角.

 

查看答案和解析>>

(本题满分13分)
设函数
(Ⅰ)求函数的最小正周期;
(Ⅱ)当时,求函数的最大值及取得最大值时的的值.

查看答案和解析>>

命题人:阳志长(株洲县五中)  方厚良(株洲县五中)  邓秋和(株洲市二中)

审题人:邓秋和(株洲市二中)  阳志长(株洲县五中)  方厚良(株洲县五中)

一、选择题:(本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。)

题号

1

10

答案

B

A

C

A

D

A

A

D

B

B

 

二、填空题:(本大题共5小题,每小题5分,共25分。把答案填写在相应的横线上。)

11. 2  12.  13.20  14.-3或-7  15.

 

三、解答题:(本大题共6小题,满分75分,解答要写出文字说明、证明过程或演算步骤)

16.解:(Ⅰ)根据正弦定理,由,----2分

∴锐角。???4分

(Ⅱ)∵,???5分

。???9分                     

-----10分

的取值范围是。-----12分

17.解:(Ⅰ)记A表示事件:进入该健身中心的1位健身者选择的是甲种项目,B表示事件:进入该健身中心的1位健身者选择的是乙种项目,则事件A与事件B相互独立,P(A)=,P(B)=。???-1分

故进入该健身中心的1位健身者选择甲、乙两种项目中的一项的概率为:P=P(A)。-??4分

(Ⅱ)记C表示事件:进入该健身中心的1位健身者既未选择甲种又未选择乙种健身项目,D表示事件:进入该健身中心的4位健身者中,至少有2位既未选择甲种又未选择乙种健身项目,A2表示事件:进入该健身中心的4位健身者中恰有2位既未选择甲种又未选择乙种健身项目,A3表示事件:进入该健身中心的4位健身者中恰有3位既未选择甲种又未选择乙种健身项目,A4表示事件:进入该健身中心的4位健身者中恰有4位既未选择甲种又未选择乙种健身项目,???5分

则P(C)=,???7分

,???8分

,???9分

???10分

。???12分

18.解:(Ⅰ)

。???3分

(Ⅱ)如图,以A为原点,DA、AB、AP所在直线为轴,建立空间直角坐标系,则B,C(-2,4,0),P(0,0,2)。???5分

设平面PBC的一个法向量

得, ,???7分

故点A到平面PBC的距离???9分

(Ⅲ)设平面PDC的一个法向量

得, ,???10分

,???11分

二面角的大小为。???12分

(其他解法酌情给分)

19(13分). 解:(Ⅰ)

∴当时,。???2分

时,,???4分

时也满足上式,故

数列的通项公式是。???6分(未验算减1分)

(Ⅱ),???7分

   ①

   ②

①     -②得

 。???9分(有错位相减思想,计算错误得1分,后继过程不计分)

数列单调递增,最小,最小值为:???11分

???12分

故正整数的最大值为2。???13分

20.解:(Ⅰ)∵

,即

。----3分

,则

平方整理得曲线C的方程:。-----6分

(Ⅱ)由曲线C的对称性知,以N为中点的弦的斜率存在,设弦的端点为,则。-----8分

∵点A、B都在曲线C上,

两式相减得:,----10分

∴弦AB的斜率,12分

∴弦AB的直线方程为,即。???13分

 

21(13分). 解:(Ⅰ),???1分

,???2分

故函数在区间上单调递增,

上单调递减。???4分

(Ⅱ)∵二次函数有最大值,。???5分

,???6分

∵函数的图象只有一个公共点,

。???7分

。???8分

(Ⅲ)当时,函数在区间上单调递增,

函数在区间上单调递增。

,解得。???10分

时,函数在区间上单调递增,

 

 

 

函数在区间上单调递增。

 

 

,解得。???12分

综上所述,实数的取值范围是。???13分

 

 


同步练习册答案