可求得. 查看更多

 

题目列表(包括答案和解析)

求Sn=1×2+2×3+3×4+…+n(n+1)(n∈N*)可用如下方法:
1×2=
1
3
(1×2×3-0×1×2)
2×3=
1
3
(2×3×4-1×2×3)
3×4=
1
3
(3×4×5-2×3×4)
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)]

将以上各式相加,得Sn=
1
3
n(n+1)(n+2),仿此方法,求Sn=1×2×3+2×3×4+…+n(n+1)(n+2)(n∈N*).

查看答案和解析>>

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2011=2009?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

求下列各组数据的方差与标准差(结果保留到小数点后一位):

    (1)1,2,3,4,5,6,7,8,9;

    (2)11,12,13,14,15,16,17,18,19;

    (3)10,20,30,40,50,60,70,80,90.

    并分析由这些结果可得出什么一般性结论.

   

查看答案和解析>>

求下列各组数据的方差与标准差(结果保留到小数点后一位):

    (1)1,2,3,4,5,6,7,8,9;

    (2)11,12,13,14,15,16,17,18,19;

    (3)10,20,30,40,50,60,70,80,90.

    并分析由这些结果可得出什么一般性结论.

查看答案和解析>>

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2011=2009?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>


同步练习册答案